Classification of faults in grid-connected photovoltaic system based on wavelet packet transform and an equilibrium optimization algorithm-extreme learning machine

极限学习机 计算机科学 小波包分解 算法 小波变换 小波 光伏系统 稳健性(进化) 人工智能 人工神经网络 工程类 生物化学 化学 电气工程 基因
作者
Masoud Ahmadipour,Muhammad Murtadha Othman,Moath Alrifaey,Rui Bo,Chun Kit Ang
出处
期刊:Measurement [Elsevier BV]
卷期号:197: 111338-111338 被引量:21
标识
DOI:10.1016/j.measurement.2022.111338
摘要

• Various types of faults are classified by the proposed optimal intelligent method. • Wavelet packet transform is used successfully to extracts the set of features. • A ELM classifier based fault detection method is proposed for binary classification of fault and non-fault conditions. • Equilibrium optimizer algorithm is applied to enhance the ELM classifier performance. A novel intelligent scheme using the wavelet packet transform (WPT) and extreme learning machine (ELM) is proposed for fault event classification in the grid-connected photovoltaic (PV) system. The WPT is applied for preprocessing the cycle of the post-fault voltage samples at the point of common coupling (PCC) measurement to get the normalized logarithmic energy entropy (NLEE). The ELM is applied to classify the different fault cases. To enhance the performance of ELM for faults classification, a hybrid optimization mechanism based on an equilibrium optimization algorithm (EOA) is proposed to optimize the selection of input feature subset and the number of ELM hidden nodes. Furthermore, to evaluate the proposed scheme's performance, a comprehensive evaluation was conducted on a 250 kW grid-connected photovoltaic system. From simulation, the classification accuracy is recorded to be 100% under the no-noise condition, while at the signal-to-noise ratios (SNR) of 30, 35, and 40 dB, the accuracies are 98.96, 99.04, and 99.36%, respectively. Moreover, the practical performance of the EOA-ELM classifier is validated using IEEE 34 bus system. The obtained results validate the effectiveness of the proposed scheme in terms of robustness against measurement noise, computation time, and detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依辰完成签到,获得积分20
刚刚
1秒前
1秒前
蒲公英发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
愉快的孤晴完成签到,获得积分10
4秒前
Akim应助forrest咕咕咕采纳,获得10
4秒前
情怀应助小仙女采纳,获得10
5秒前
敖江风云发布了新的文献求助10
6秒前
熊猫侠发布了新的文献求助10
7秒前
7秒前
JSEILWQ发布了新的文献求助10
7秒前
7秒前
超帅曼柔发布了新的文献求助10
8秒前
setsail0816发布了新的文献求助30
8秒前
英俊的铭应助njc大魔王采纳,获得10
11秒前
12秒前
Waris发布了新的文献求助10
13秒前
rmbsLHC发布了新的文献求助10
13秒前
14秒前
Ayyyy完成签到,获得积分10
14秒前
15秒前
15秒前
小火车发布了新的文献求助10
17秒前
依辰关注了科研通微信公众号
18秒前
时间海发布了新的文献求助30
19秒前
科研通AI5应助真菌采纳,获得10
20秒前
黑米粥发布了新的文献求助10
20秒前
77关注了科研通微信公众号
21秒前
21秒前
杨琴发布了新的文献求助10
21秒前
南北发布了新的文献求助10
22秒前
B哥发布了新的文献求助10
23秒前
曲佳鑫发布了新的文献求助10
24秒前
26秒前
黄sir发布了新的文献求助30
26秒前
wwmmyy完成签到 ,获得积分10
27秒前
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815177
求助须知:如何正确求助?哪些是违规求助? 3359132
关于积分的说明 10400226
捐赠科研通 3076720
什么是DOI,文献DOI怎么找? 1689995
邀请新用户注册赠送积分活动 813514
科研通“疑难数据库(出版商)”最低求助积分说明 767673