Machine learning for structural engineering: A state-of-the-art review

计算机科学 结构健康监测 繁荣 结构体系 结构完整性 Python(编程语言) 建筑工程 人工智能 系统工程 软件工程 工程类 结构工程 程序设计语言 环境工程
作者
Huu‐Tai Thai
出处
期刊:Structures [Elsevier BV]
卷期号:38: 448-491 被引量:378
标识
DOI:10.1016/j.istruc.2022.02.003
摘要

Machine learning (ML) has become the most successful branch of artificial intelligence (AI). It provides a unique opportunity to make structural engineering more predictable due to its ability in handling complex nonlinear structural systems under extreme actions. Currently, there is a boom in implementing ML in structural engineering, especially over the last five years thanks to recent advances in ML techniques and computational capabilities as well as the availability of large datasets. This paper provides an ambitious and comprehensive review on the growing applications of ML algorithms for structural engineering. An overview of ML techniques for structural engineering is presented with a particular focus on basic ML concepts, ML libraries, open-source Python codes, and structural engineering datasets. The review covers a wide range of structural engineering applications of ML including: (1) structural analysis and design, (2) structural health monitoring and damage detection, (3) fire resistance of structures; (4) resistance of structural members under various actions, and (5) mechanical properties and mix design of concrete. Both isolated members and whole systems made from steel, concrete and composite materials are explored. Findings from the reviewed literature, challenges and future commendations are highlighted and discussed. With available databases and ML codes provided, this review paper serves as a useful reference for structural engineering practitioners and researchers who are not familiar with ML but wish to enter this field of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乎乎完成签到 ,获得积分10
1秒前
重要手机发布了新的文献求助10
1秒前
3秒前
raolixiang完成签到,获得积分10
4秒前
013完成签到,获得积分10
4秒前
热心书易完成签到,获得积分10
5秒前
MY完成签到,获得积分10
5秒前
科研通AI2S应助whuhustwit采纳,获得10
7秒前
科研小白发布了新的文献求助10
7秒前
SharonDu完成签到 ,获得积分10
7秒前
9秒前
洁净方盒完成签到,获得积分10
10秒前
科研通AI5应助蓝丝绒采纳,获得10
10秒前
Jonas完成签到,获得积分0
12秒前
科研通AI5应助Moir-GS采纳,获得10
12秒前
hanliulaixi发布了新的文献求助10
13秒前
思源应助背后的白山采纳,获得10
14秒前
李容容完成签到,获得积分20
15秒前
不吃香菜的爆炸小飞鱼完成签到 ,获得积分10
15秒前
2222233完成签到,获得积分20
15秒前
17秒前
asma发布了新的文献求助10
17秒前
领导范儿应助Wu采纳,获得10
17秒前
香蕉觅云应助handsomelin采纳,获得10
17秒前
19秒前
19秒前
李容容发布了新的文献求助10
20秒前
逃亡的小狗完成签到,获得积分10
22秒前
今后应助科研小白采纳,获得10
24秒前
24秒前
25秒前
25秒前
Moir-GS发布了新的文献求助10
25秒前
songblue发布了新的文献求助20
27秒前
wang1完成签到 ,获得积分10
29秒前
30秒前
胡强完成签到,获得积分10
30秒前
32秒前
zzzzz完成签到,获得积分10
32秒前
tunerling完成签到,获得积分10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979