Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

帕累托原理 最优化问题 帕累托最优 计算机科学 选择(遗传算法)
作者
Ivo Couckuyt,Dirk Deschrijver,Tom Dhaene
出处
期刊:Journal of Global Optimization [Springer Nature]
卷期号:60 (3): 575-594 被引量:173
标识
DOI:10.1007/s10898-013-0118-2
摘要

The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
EMMA完成签到,获得积分10
8秒前
11秒前
zoe完成签到 ,获得积分10
12秒前
RoboSAMA完成签到 ,获得积分10
13秒前
15秒前
jkljlj发布了新的文献求助10
16秒前
张昌炜完成签到 ,获得积分10
18秒前
科目三应助留胡子的火采纳,获得10
20秒前
耶椰完成签到,获得积分10
20秒前
23秒前
orixero应助耶椰采纳,获得10
31秒前
33秒前
陶醉若云发布了新的文献求助10
33秒前
麦可发布了新的文献求助10
33秒前
秦罗敷应助科研牛马采纳,获得10
34秒前
浮游应助FLyu采纳,获得10
34秒前
厚朴应助清欢小适采纳,获得20
36秒前
小少发布了新的文献求助10
38秒前
39秒前
英姑应助Xjx6519采纳,获得10
39秒前
研友_VZG7GZ应助阳光的梦寒采纳,获得10
43秒前
Ava应助吴咪采纳,获得10
46秒前
BALB/c饲养员完成签到,获得积分10
47秒前
英姑应助Wqian采纳,获得10
47秒前
美女完成签到,获得积分10
50秒前
55秒前
陶醉若云完成签到,获得积分10
55秒前
科研通AI6应助kingwhitewing采纳,获得10
57秒前
春日无尾熊完成签到 ,获得积分10
1分钟前
Wqian发布了新的文献求助10
1分钟前
hoy关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
CipherSage应助伯言采纳,获得10
1分钟前
东方越彬发布了新的文献求助10
1分钟前
科研通AI6应助Jodie采纳,获得10
1分钟前
Xjx6519发布了新的文献求助10
1分钟前
麦可完成签到,获得积分10
1分钟前
龙卷风摧毁停车场完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555