Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

帕累托原理 最优化问题 帕累托最优 计算机科学 选择(遗传算法)
作者
Ivo Couckuyt,Dirk Deschrijver,Tom Dhaene
出处
期刊:Journal of Global Optimization [Springer Science+Business Media]
卷期号:60 (3): 575-594 被引量:173
标识
DOI:10.1007/s10898-013-0118-2
摘要

The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NULI完成签到 ,获得积分10
刚刚
2秒前
科研应助听风采纳,获得10
2秒前
GMY完成签到,获得积分10
4秒前
韭菜盒子发布了新的文献求助10
4秒前
zs完成签到,获得积分10
4秒前
认真雅阳发布了新的文献求助10
5秒前
空想家完成签到 ,获得积分10
5秒前
科研通AI5应助yyryyrr采纳,获得10
5秒前
顾矜应助一十六采纳,获得10
6秒前
Cecilia完成签到,获得积分10
6秒前
fancyking发布了新的文献求助10
8秒前
9秒前
今后应助韭菜盒子采纳,获得10
10秒前
12秒前
pearl完成签到,获得积分10
12秒前
wzy发布了新的文献求助10
14秒前
认真雅阳完成签到,获得积分10
16秒前
欣喜谷槐完成签到,获得积分10
18秒前
研友_LwlRen完成签到 ,获得积分10
18秒前
jiangcai完成签到,获得积分10
18秒前
一十六发布了新的文献求助10
19秒前
12发布了新的文献求助10
20秒前
25秒前
pearl发布了新的文献求助10
26秒前
小浅笑完成签到,获得积分10
29秒前
31秒前
Rae完成签到,获得积分10
33秒前
打打应助小可乐呀小可乐采纳,获得10
33秒前
科目三应助12采纳,获得10
33秒前
34秒前
一一应助HR112采纳,获得10
34秒前
TT完成签到,获得积分10
35秒前
韭菜盒子发布了新的文献求助10
36秒前
37秒前
奂锐123发布了新的文献求助10
38秒前
慕青应助韭菜盒子采纳,获得10
40秒前
黑马王子完成签到,获得积分10
40秒前
41秒前
jiajia完成签到 ,获得积分10
42秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332370
捐赠科研通 3063467
什么是DOI,文献DOI怎么找? 1681747
邀请新用户注册赠送积分活动 807681
科研通“疑难数据库(出版商)”最低求助积分说明 763864