Decoupling noise and features via weighted ℓ 1 -analysis compressed sensing

降噪 算法 计算机科学 拉普拉斯算子 噪音(视频) 残余物 拉普拉斯矩阵 几何处理 计算 梯度噪声 人工智能 数学 模式识别(心理学) 多边形网格 噪声测量 数学分析 噪声地板 计算机图形学(图像) 图像(数学)
作者
Ruimin Wang,Zhouwang Yang,Ligang Liu,Jiansong Deng,Falai Chen
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:33 (2): 1-12 被引量:85
标识
DOI:10.1145/2557449
摘要

Many geometry processing applications are sensitive to noise and sharp features. Although there are a number of works on detecting noise and sharp features in the literature, they are heuristic. On one hand, traditional denoising methods use filtering operators to remove noise, however, they may blur sharp features and shrink the object. On the other hand, noise makes detection of features, which relies on computation of differential properties, unreliable and unstable. Therefore, detecting noise and features on discrete surfaces still remains challenging. In this article, we present an approach for decoupling noise and features on 3D shapes. Our approach consists of two phases. In the first phase, a base mesh is estimated from the input noisy data by a global Laplacian regularization denoising scheme. The estimated base mesh is guaranteed to asymptotically converge to the true underlying surface with probability one as the sample size goes to infinity. In the second phase, an ℓ 1 -analysis compressed sensing optimization is proposed to recover sharp features from the residual between base mesh and input mesh. This is based on our discovery that sharp features can be sparsely represented in some coherent dictionary which is constructed by the pseudo-inverse matrix of the Laplacian of the shape. The features are recovered from the residual in a progressive way. Theoretical analysis and experimental results show that our approach can reliably and robustly remove noise and extract sharp features on 3D shapes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王完成签到,获得积分10
1秒前
贺呵呵发布了新的文献求助10
1秒前
akon完成签到,获得积分10
1秒前
1秒前
魔幻的从梦完成签到,获得积分10
2秒前
笨笨芯发布了新的文献求助10
3秒前
bkagyin应助刻苦秋烟采纳,获得10
4秒前
天津科技大学完成签到,获得积分10
4秒前
Owen应助好好好采纳,获得10
5秒前
adheret完成签到,获得积分10
7秒前
7秒前
木之木完成签到,获得积分10
7秒前
科研通AI5应助Guoshibo采纳,获得10
8秒前
科烟生完成签到,获得积分10
8秒前
伏地魔关注了科研通微信公众号
9秒前
9秒前
gy完成签到,获得积分20
9秒前
10秒前
落雪123完成签到,获得积分10
10秒前
11秒前
11秒前
隔壁海绵宝宝完成签到,获得积分10
11秒前
mengzhe完成签到,获得积分10
12秒前
12秒前
Silence完成签到 ,获得积分10
12秒前
树下的枫凉完成签到,获得积分10
12秒前
Fayth完成签到,获得积分10
13秒前
rh1006发布了新的文献求助10
14秒前
Ava应助zhscu采纳,获得10
14秒前
zx598376321完成签到,获得积分10
14秒前
14秒前
玉地关注了科研通微信公众号
14秒前
恩雁发布了新的文献求助10
14秒前
乔木木完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
大个应助摆渡翁采纳,获得10
16秒前
Wiggins完成签到,获得积分10
16秒前
17秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820678
求助须知:如何正确求助?哪些是违规求助? 3363573
关于积分的说明 10423756
捐赠科研通 3081991
什么是DOI,文献DOI怎么找? 1695386
邀请新用户注册赠送积分活动 815069
科研通“疑难数据库(出版商)”最低求助积分说明 768856