气溶胶
化学
热力学平衡
铵
热力学
硝酸盐
分析化学(期刊)
物理
环境化学
有机化学
作者
C. Fountoukis,Athanasios Nenes
标识
DOI:10.5194/acp-7-4639-2007
摘要
Abstract. This study presents ISORROPIA II, a thermodynamic equilibrium model for the K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosol system. A comprehensive evaluation of its performance is conducted against water uptake measurements for laboratory aerosol and predictions of the SCAPE2 thermodynamic module over a wide range of atmospherically relevant conditions. The two models agree well, to within 13% for aerosol water content and total PM mass, 16% for aerosol nitrate and 6% for aerosol chloride and ammonium. Largest discrepancies were found under conditions of low RH, primarily from differences in the treatment of water uptake and solid state composition. In terms of computational speed, ISORROPIA II was more than an order of magnitude faster than SCAPE2, with robust and rapid convergence under all conditions. The addition of crustal species does not slow down the thermodynamic calculations (compared to the older ISORROPIA code) because of optimizations in the activity coefficient calculation algorithm. Based on its computational rigor and performance, ISORROPIA II appears to be a highly attractive alternative for use in large scale air quality and atmospheric transport models.
科研通智能强力驱动
Strongly Powered by AbleSci AI