Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation

过电位 氢氧化物 催化作用 材料科学 电化学 化学工程 析氧 氢氧化钴 层状双氢氧化物 无机化学 化学 电极 冶金 有机化学 物理化学 工程类
作者
Ying Li,Lu Zhang,Xu Xiang,Dongpeng Yan,Feng Li
出处
期刊:Journal of materials chemistry. A, Materials for energy and sustainability [Royal Society of Chemistry]
卷期号:2 (33): 13250-13250 被引量:339
标识
DOI:10.1039/c4ta01275e
摘要

The construction of highly efficient electrocatalysts for water splitting has played an important role in developing sustainable energy sources. Herein, binary zinc–cobalt layered double hydroxide (ZnCo-LDH) films were directly grown on a conductive metal foil by a facile electrodeposition method. The as-deposited ZnCo-LDH films were composed of highly oriented nanowalls with the ab plane vertical to the substrate. The interconnected two-dimensional (2D) LDH nanosheets acted as basic units for the nanowall architectures, which exhibited excellent catalytic activity for electrochemical water oxidation in alkali solution. The onset overpotential of the optimal LDH catalyst for oxygen-evolving reactions is ∼0.33 V in an alkali solution, superior or comparable to those of well-known Co-based electrocatalysts (e.g. Co3O4). The turnover frequencies (TOFs) of ZnCo-LDH catalysts show a linear dependence on the overpotentials, higher than that of monometallic cobalt hydroxide at the overpotential beyond 0.55 V. For instance, at the overpotential of 0.7 V, the TOF value (3.56 s−1) of the optimal LDH is 1.7 times higher than that of monometallic cobalt hydroxide and is 4 times higher than that of LDH powder prepared by a co-precipitation method. The high catalytic activity is attributed to the highly sufficient exposure of accessible active sites on the vertically grown 2D nanosheets. Therefore, this study provides an effective way for preparing high-performance electrocatalysts based on LDH nanosheets, which are beneficial to practical engineering applications owing to their robust binding and integrated construction on metal substrates with any desirable shape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔孔孔发布了新的文献求助10
1秒前
打打应助Aliceeliu采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
天天快乐应助logo采纳,获得10
6秒前
乐观小之应助冰糖雪梨采纳,获得10
6秒前
7秒前
8秒前
8秒前
不安的鸡翅完成签到,获得积分10
9秒前
12秒前
15秒前
amumu发布了新的文献求助30
15秒前
奋斗初南发布了新的文献求助10
16秒前
科研通AI5应助7364采纳,获得10
17秒前
Jeffery发布了新的文献求助10
17秒前
18秒前
grace完成签到,获得积分10
18秒前
19秒前
大龙哥886应助Fury采纳,获得10
19秒前
21秒前
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
核桃应助科研通管家采纳,获得10
21秒前
21秒前
英姑应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
核桃应助科研通管家采纳,获得10
21秒前
Jeffery完成签到,获得积分10
23秒前
Aliceeliu发布了新的文献求助10
25秒前
AnJaShua完成签到 ,获得积分10
25秒前
28秒前
30秒前
量子星尘发布了新的文献求助10
32秒前
俭朴小松鼠完成签到,获得积分10
33秒前
33秒前
wen完成签到,获得积分10
34秒前
peipei完成签到,获得积分20
35秒前
卡卡发布了新的文献求助10
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4209464
求助须知:如何正确求助?哪些是违规求助? 3743513
关于积分的说明 11783512
捐赠科研通 3413314
什么是DOI,文献DOI怎么找? 1872993
邀请新用户注册赠送积分活动 927614
科研通“疑难数据库(出版商)”最低求助积分说明 837133