Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation

过电位 氢氧化物 催化作用 材料科学 电化学 化学工程 析氧 氢氧化钴 层状双氢氧化物 无机化学 化学 电极 冶金 有机化学 物理化学 工程类
作者
Ying Li,Lu Zhang,Xu Xiang,Dongpeng Yan,Feng Li
出处
期刊:Journal of materials chemistry. A, Materials for energy and sustainability [Royal Society of Chemistry]
卷期号:2 (33): 13250-13250 被引量:339
标识
DOI:10.1039/c4ta01275e
摘要

The construction of highly efficient electrocatalysts for water splitting has played an important role in developing sustainable energy sources. Herein, binary zinc–cobalt layered double hydroxide (ZnCo-LDH) films were directly grown on a conductive metal foil by a facile electrodeposition method. The as-deposited ZnCo-LDH films were composed of highly oriented nanowalls with the ab plane vertical to the substrate. The interconnected two-dimensional (2D) LDH nanosheets acted as basic units for the nanowall architectures, which exhibited excellent catalytic activity for electrochemical water oxidation in alkali solution. The onset overpotential of the optimal LDH catalyst for oxygen-evolving reactions is ∼0.33 V in an alkali solution, superior or comparable to those of well-known Co-based electrocatalysts (e.g. Co3O4). The turnover frequencies (TOFs) of ZnCo-LDH catalysts show a linear dependence on the overpotentials, higher than that of monometallic cobalt hydroxide at the overpotential beyond 0.55 V. For instance, at the overpotential of 0.7 V, the TOF value (3.56 s−1) of the optimal LDH is 1.7 times higher than that of monometallic cobalt hydroxide and is 4 times higher than that of LDH powder prepared by a co-precipitation method. The high catalytic activity is attributed to the highly sufficient exposure of accessible active sites on the vertically grown 2D nanosheets. Therefore, this study provides an effective way for preparing high-performance electrocatalysts based on LDH nanosheets, which are beneficial to practical engineering applications owing to their robust binding and integrated construction on metal substrates with any desirable shape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助科研通管家采纳,获得10
1秒前
3秒前
ZHANG完成签到 ,获得积分10
12秒前
Fern完成签到 ,获得积分10
14秒前
27秒前
Boris完成签到 ,获得积分10
29秒前
baolipao完成签到,获得积分10
30秒前
oyfff完成签到 ,获得积分10
33秒前
Jasper应助含蓄的芾采纳,获得10
35秒前
oscar完成签到,获得积分10
35秒前
kkk完成签到 ,获得积分10
36秒前
含蓄的芾完成签到,获得积分10
50秒前
柴yuki完成签到 ,获得积分10
51秒前
51秒前
屠夫9441完成签到 ,获得积分10
54秒前
lalalal完成签到 ,获得积分10
55秒前
racill完成签到 ,获得积分10
58秒前
残幻应助wangyt采纳,获得10
1分钟前
1分钟前
郭mm完成签到 ,获得积分10
1分钟前
筱煜发布了新的文献求助10
1分钟前
yi完成签到 ,获得积分10
1分钟前
不着四六的岁月完成签到,获得积分10
1分钟前
liang19640908完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助筱煜采纳,获得10
1分钟前
逆流的鱼完成签到 ,获得积分10
1分钟前
GDMU完成签到,获得积分10
1分钟前
寒战完成签到 ,获得积分10
1分钟前
受伤问凝完成签到 ,获得积分10
1分钟前
1分钟前
可靠的雪青完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
我是老大应助科研通管家采纳,获得20
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
isedu完成签到,获得积分10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777640
求助须知:如何正确求助?哪些是违规求助? 3323099
关于积分的说明 10212929
捐赠科研通 3038447
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798115
科研通“疑难数据库(出版商)”最低求助积分说明 758237