相扑蛋白
拟南芥
拟南芥
质谱法
化学
细胞生物学
计算生物学
生物
生物化学
色谱法
基因
突变体
泛素
作者
Sachiko Okada,Mio Nagabuchi,Yusuke Takamura,Tsuyoshi Nakagawa,Kaori Shinmyozu,Jun‐ichi Nakayama,Katsunori Tanaka
摘要
Recent studies have revealed various functions for the small ubiquitin-related modifier (SUMO) in diverse biological phenomena, such as regulation of cell division, DNA repair and transcription, in yeast and animals. In contrast, only a limited number of proteins have been characterized in plants, although plant SUMO proteins are involved in many physiological processes, such as stress responses, regulation of flowering time and defense reactions to pathogen attack. Here, we reconstituted the Arabidopsis thaliana SUMOylation cascade in Escherichia coli. This system is rapid and effective for the evaluation of the SUMOylation of potential SUMO target proteins. We tested the ability of this system to conjugate the Arabidopsis SUMO isoforms, AtSUMO1, 2, 3 and 5, to a model substrate, AtMYB30, which is an Arabidopsis transcription factor. All four SUMO isoforms tested were able to SUMOylate AtMYB30. Furthermore, SUMOylation sites of AtMYB30 were characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by mutational analysis in combination with this system. Using this reconstituted SUMOylation system, comparisons of SUMOylation patterns among SUMO isoforms can be made, and will provide insights into the SUMO isoform specificity of target modification. The identification of SUMOylation sites enables us to investigate the direct effects of SUMOylation using SUMOylation-defective mutants. This system will be a powerful tool for elucidation of the role of SUMOylation and of the biochemical and structural features of SUMOylated proteins in plants.
科研通智能强力驱动
Strongly Powered by AbleSci AI