Nanomotors (NMs) achieve autonomous motion by converting external energy into mechanical work, enabling them to perform complex tasks on demand. Among the various propulsion mechanisms for NMs, near-infrared (NIR) light propulsion has attracted significant attention due to its excellent biocompatibility, deep tissue penetration, minimal damage to normal tissues, precise on/off control, and rapid response. Furthermore, NIR propulsion can be integrated with other propulsion mechanisms to overcome the limitations of single-mode systems. In this review, we explore the design of NIR light-propelled NMs, categorizing their mechanisms into three types: (1) photothermal propulsion, (2) NIR light-triggered bubble propulsion, and (3) photothermal-bubble dual-driven propulsion systems. We also highlight the applications of NIR light-propelled NMs in treating diseases such as tumors, thrombosis, and bacterial infections. In addition, the challenges and future prospects for the development of NIR light-propelled NMs are also discussed.