The integration of vision transformers and SAM for automated methane super-emitter detection using TROPOMI data

甲烷 共发射极 遥感 环境科学 工程类 地理 化学 电气工程 有机化学
作者
Mohammad Marjani,Masoud Mahdianpari,Daniel J. Varon,Fariba Mohammadimanesh
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:393: 127034-127034
标识
DOI:10.1016/j.jenvman.2025.127034
摘要

Methane (CH4) significantly contributes to global warming, with a global warming potential approximately 84 times greater than carbon dioxide (CO2) over 20 years. Numerous studies have shown that a small number of high-emitting point sources, known as super-emitters, account for a disproportionately large share of total anthropogenic CH4 emissions, underscoring the urgency of targeted detection strategies. Recently, a growing focus has been on using remote sensing technology for CH4 monitoring across various emission sources. As such, this study introduces an automated solution for identifying CH4 super-emitters using Sentinel-5P (S5P) satellite data. Specifically, a deep learning (DL) framework that integrates a Vision Transformer (ViT) and the Segment Anything Model (SAM) for CH4 plume detection is proposed. The ViT model is trained using CH4 plume locations reported by the Netherlands Institute for Space Research (SRON) to classify the presence or absence of CH4 plumes within image patches, achieving an overall accuracy (OA) of 0.92. Subsequently, SAM extracts plume boundaries from patches identified as plumes by the ViT. Integrated Mass Enhancement (IME) is then used to quantify emission rates based on the SAM-generated masks. This approach is applied to various known emission regions, including Turkmenistan, Spain, Algeria, Argentina, China, Iran, the United States, India, and Morocco, identifying significant CH4 plumes with emission rates up to 92 t/h. The reported rates align closely with SRON values for the same dates and locations. While the ViT model requires supervised training, the SAM component operates without mask-specific training data, enabling automated and generalizable mask extraction. This study demonstrates the potential of combining advanced AI models with satellite data for effective CH4 monitoring and environmental assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
巫马半邪完成签到,获得积分10
刚刚
桐桐应助关于我采纳,获得10
1秒前
1秒前
noesouth完成签到 ,获得积分10
1秒前
合适的天奇完成签到,获得积分10
1秒前
1秒前
2秒前
米九九发布了新的文献求助10
2秒前
2秒前
Jasen发布了新的文献求助10
3秒前
3秒前
FG发布了新的文献求助10
3秒前
我憋不住了完成签到,获得积分10
4秒前
运气爆棚完成签到,获得积分10
4秒前
4秒前
过冷风应助lwl666采纳,获得10
4秒前
DQ发布了新的文献求助10
4秒前
Cm完成签到,获得积分10
5秒前
qweqdsa发布了新的文献求助10
5秒前
5秒前
巫马半邪发布了新的文献求助10
6秒前
要吃虾饺发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
Kiming完成签到,获得积分10
7秒前
7秒前
李嗯呐完成签到 ,获得积分10
7秒前
张可可关注了科研通微信公众号
7秒前
shauiluo完成签到,获得积分10
8秒前
8秒前
SGQT完成签到,获得积分10
8秒前
keyanzhang完成签到,获得积分10
8秒前
Cm发布了新的文献求助10
8秒前
Jasen完成签到,获得积分10
9秒前
daididexhl完成签到,获得积分10
9秒前
酷酷煎饼发布了新的文献求助10
9秒前
9秒前
cwb发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Spatial Econometrics: Spatial Autoregressive Models (World Scientific Series on Econometrics and Statistics Book 1) 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111233
求助须知:如何正确求助?哪些是违规求助? 4319517
关于积分的说明 13458147
捐赠科研通 4149976
什么是DOI,文献DOI怎么找? 2273921
邀请新用户注册赠送积分活动 1275975
关于科研通互助平台的介绍 1214178