Out-of-the-Box Large Language Models for Detecting and Classifying Critical Findings in Radiology Reports Using Various Prompt Strategies

作者
Ish Talati,Juan Manuel Zambrano Chaves,Avisha Das,Imon Banerjee,Daniel L. Rubin
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:: 1-11 被引量:1
标识
DOI:10.2214/ajr.25.33469
摘要

BACKGROUND. The increasing complexity and volume of radiology reports present challenges for timely communication of critical findings. OBJECTIVE. The purpose of this study was to evaluate the performance of two out-of-the-box large language models (LLMs) in detecting and classifying critical findings in radiology reports by use of various prompt strategies. METHODS. The analysis included 252 radiology reports of varying modalities and anatomic regions that were extracted from the MIMIC-III (Medical Information Mart for Intensive Care) database, and were divided into a prompt-engineering tuning set of 50 reports, a holdout test set of 125 reports, and a pool of 77 remaining reports used as examples for few-shot prompting. An external test set of 180 chest radiography reports was extracted from the CheXpert Plus database. Reports were manually reviewed to identify critical findings and classify such findings into one of three categories (true critical findings, known/expected critical findings, and equivocal critical findings). After prompt engineering using various prompt strategies was conducted, a final prompt for optimal detection of true critical findings was selected. Two general-purpose LLMs, GPT-4 and Mistral-7B, processed reports in the test sets by use of the final prompt. Evaluation included automated text similarity metrics (BLEU-1 [Bilingual Evaluation Understudy], ROUGE-F1 [Recall-Oriented Understudy for Gisting Evaluation with F1], and G-Eval) and manual performance metrics (precision and recall). RESULTS. For true critical findings, zero-shot, few-shot static (five examples), and few-shot dynamic (five examples) prompting yielded BLEU-1 of 0.691, 0.778, and 0.748; ROUGE-F1 of 0.706, 0.797, and 0.773; and G-Eval of 0.428, 0.573, and 0.516, respectively. Precision and recall for true critical findings, known/expected critical findings, and equivocal critical findings, respectively, were as follows: 90.1% and 86.9%, 80.9% and 85.0%, and 80.5% and 94.3% in the holdout test set for GPT-4; 75.6% and 77.4%, 34.1% and 70.0%, and 41.3% and 74.3% in the holdout test set for Mistral-7B; 82.6% and 98.3%, 76.9% and 71.4%, and 70.8% and 85.0% in the external test set for GPT-4; and 75.0% and 93.1%, 33.3% and 92.9%, and 34.0% and 80.0% in the external test set for Mistral-7B. CONCLUSION. Out-of-the-box LLMs were used to detect and classify arbitrary numbers of critical findings in radiology reports. The optimal model for true critical findings entailed a few-shot static approach. CLINICAL IMPACT. The study shows a role of contemporary general-purpose models in adapting to specialized medical tasks using minimal data annotation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助LYP采纳,获得10
刚刚
叮咚发布了新的文献求助10
2秒前
2秒前
我是老大应助棋子采纳,获得10
2秒前
3秒前
领导范儿应助文艺的元容采纳,获得10
5秒前
芒果完成签到 ,获得积分10
5秒前
jiang发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
周em12_完成签到,获得积分10
7秒前
霝愿发布了新的文献求助10
7秒前
LinZhi完成签到,获得积分10
8秒前
宇宙超人完成签到,获得积分10
8秒前
9秒前
9秒前
万松辉完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
121发布了新的文献求助10
11秒前
chenjian完成签到,获得积分10
12秒前
14秒前
15秒前
16秒前
jiang完成签到,获得积分10
16秒前
大力发布了新的文献求助10
16秒前
霝愿完成签到,获得积分20
16秒前
16秒前
fifi发布了新的文献求助20
17秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
wanci应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601874
求助须知:如何正确求助?哪些是违规求助? 4687221
关于积分的说明 14848027
捐赠科研通 4682133
什么是DOI,文献DOI怎么找? 2539575
邀请新用户注册赠送积分活动 1506378
关于科研通互助平台的介绍 1471340