Visible light-driven chlorite activation process for enhanced sulfamethoxazole antibiotics degradation, antimicrobial resistance reduction and biotoxicity elimination

二氧化氯 光催化 化学 绿泥石 二氧化钛 降级(电信) 高级氧化法 光化学 可见光谱 化学工程 无机化学 催化作用 材料科学 有机化学 计算机科学 复合材料 工程类 电信 光电子学 石英
作者
Xiaoyang Song,Ruidian Su,Yanhua Wang,Yan Zhang,Baoyu Gao,Yan Wang,Defang Ma,Qian Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:452: 139103-139103 被引量:24
标识
DOI:10.1016/j.cej.2022.139103
摘要

In this study, a visible light-driven chlorite activation process, i.e., the combined ClO2-photocatalysis process, was constructed to efficiently produce chlorine dioxide for the enhanced degradation of the sulfamethoxazole antibiotic from aqueous solutions. The superiority of the combined ClO2-photocatalysis process compared to visible light photocatalytic system, and chlorine dioxide oxidation process was systematically investigated. The addition of chlorite in the BiOI-based visible light photocatalytic system achieved 100% removal of sulfamethoxazole within 30 min, surpassing both the photocatalytic system (16%) and chlorine dioxide oxidation process (70%). The degradation constant rate (k) was 0.0771 min−1, which was 2.7 times and 51.4 times higher than the chlorine dioxide oxidation process and photocatalytic system, respectively. Water matrix conditions including pH, inorganic ions, and organic matter had little effect on the degradation efficiency of sulfamethoxazole in the combined ClO2-photocatalysis process. Moreover, antibiotic-resistant bacteria can be effectively inactivated and the production of toxic chlorine-containing intermediates and disinfection byproducts is significantly inhibited. This combined ClO2-photocatalysis process takes advantage of photogenerated radicals to activate chlorite to chlorine dioxide, which not only promotes electron-hole separation, but also exhibits high efficiency, durability, resistance to external environment disturbances, and environmental safety, making it a good candidate for the efficient, green, and sustainable treatment of pharmaceutical wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZYY完成签到,获得积分10
刚刚
小白又鹏完成签到,获得积分10
1秒前
2秒前
随遇而安发布了新的文献求助10
2秒前
mdjinij发布了新的文献求助10
3秒前
愿皆自爱完成签到,获得积分20
5秒前
丁昆完成签到,获得积分10
5秒前
hannah完成签到,获得积分10
6秒前
6秒前
蓝天0812完成签到,获得积分20
8秒前
9秒前
9秒前
yang发布了新的文献求助10
9秒前
微笑的怜南应助Lion Li采纳,获得10
11秒前
酷波er应助漂亮的冰萍采纳,获得10
13秒前
bird发布了新的文献求助10
14秒前
green发布了新的文献求助30
15秒前
LiSheng发布了新的文献求助10
15秒前
饼饼完成签到,获得积分10
16秒前
哈楠完成签到,获得积分10
19秒前
twq发布了新的文献求助10
20秒前
21秒前
25秒前
bird完成签到,获得积分10
26秒前
大模型应助yang采纳,获得10
27秒前
acceleactor完成签到,获得积分20
30秒前
swu发布了新的文献求助10
30秒前
忐忑的远山应助Lion Li采纳,获得10
33秒前
搜集达人应助green采纳,获得30
35秒前
Ava应助yyyrocket采纳,获得10
35秒前
ksmile完成签到,获得积分10
35秒前
39秒前
39秒前
40秒前
星辰大海应助科研通管家采纳,获得10
41秒前
852应助科研通管家采纳,获得10
41秒前
桐桐应助科研通管家采纳,获得10
41秒前
顾矜应助科研通管家采纳,获得10
41秒前
爆米花应助科研通管家采纳,获得10
41秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2423071
求助须知:如何正确求助?哪些是违规求助? 2111934
关于积分的说明 5347540
捐赠科研通 1839409
什么是DOI,文献DOI怎么找? 915665
版权声明 561239
科研通“疑难数据库(出版商)”最低求助积分说明 489747