Adaptive Learning Rate Residual Network Based on Physics-Informed for Solving Partial Differential Equations

残余物 偏微分方程 人工神经网络 泊松方程 边界(拓扑) 应用数学 计算机科学 适应性学习 边值问题 数学优化 数学 算法 人工智能 数学分析
作者
Miaomiao Chen,Ruiping Niu,Ming Li,Junhong Yue
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:20 (02) 被引量:3
标识
DOI:10.1142/s0219876222500499
摘要

Recently, Physics-informed neural networks (PINNs) have been widely applied to solving various types of partial differential equations (PDEs) such as Poisson equation, Klein–Gordon equation, and diffusion equation. However, it is difficult to obtain higher accurate solutions, especially at the boundary due to the gradient imbalance of different loss terms for the PINN model. In this work, an adaptive learning rate residual network algorithm based on physics-informed (adaptive-PIRN) is proposed to overcome this limitation of the PINN model. In the adaptive-PIRN model, an adaptive learning rate technique is introduced to adaptively configure appropriate weights to the residual loss of the governing equation and the loss of initial/boundary conditions (I/BCs) by utilizing gradient statistics, which can alleviate gradient imbalance of different loss terms in PINN. Besides, based on the idea of ResNet, the “short connection” technique is used in adaptive-PIRN model, which can ensure that the original information is identically mapped. This structure has stronger expressive capabilities than fully connected neural networks and can avoid gradient disappearance. Finally, three different types of PDE are conducted to demonstrate predictive accuracy of our model. In addition, it is clearly observed from the results that the adaptive-PIRN can balance the gradient of loss items to a great extent, which improves the effectiveness of this network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不敢自称科研人完成签到,获得积分10
5秒前
千a发布了新的文献求助10
5秒前
黑葫芦完成签到,获得积分10
6秒前
自由的水绿完成签到 ,获得积分10
6秒前
李健应助冬冬采纳,获得10
8秒前
现代的滑板完成签到,获得积分20
11秒前
直率的心情完成签到,获得积分10
13秒前
15秒前
15秒前
15秒前
葛力发布了新的文献求助10
15秒前
苦瓜大王发布了新的文献求助10
15秒前
brainxue完成签到,获得积分10
16秒前
简易发布了新的文献求助10
16秒前
万能图书馆应助千a采纳,获得30
17秒前
19秒前
ZWK发布了新的文献求助10
22秒前
毛毛完成签到,获得积分10
22秒前
23秒前
mermaid完成签到,获得积分10
24秒前
张海洋应助齐静春采纳,获得10
25秒前
憨憨鱼完成签到,获得积分10
26秒前
烟花应助Lisianthus采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
雨曦发布了新的文献求助20
29秒前
乐乐应助小浣熊采纳,获得10
30秒前
30秒前
小巧冰烟完成签到 ,获得积分10
31秒前
丘比特应助高工采纳,获得10
33秒前
linci完成签到,获得积分10
33秒前
35秒前
商毛毛发布了新的文献求助10
41秒前
didida发布了新的文献求助10
42秒前
Lisianthus完成签到,获得积分20
42秒前
小二郎应助zyc采纳,获得10
44秒前
45秒前
香蕉觅云应助XMUh采纳,获得10
47秒前
47秒前
49秒前
49秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881322
求助须知:如何正确求助?哪些是违规求助? 3423718
关于积分的说明 10735730
捐赠科研通 3148673
什么是DOI,文献DOI怎么找? 1737315
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087