Real-Time Counting and Height Measurement of Nursery Seedlings Based on Ghostnet–YoloV4 Network and Binocular Vision Technology

计算机科学 卷积神经网络 人工智能 领域(数学) 深度学习 特征(语言学) 实时计算 计算机视觉 模式识别(心理学) 数学 语言学 哲学 纯数学
作者
Xuguang Yuan,Dan Li,Peng Sun,Gen Wang,Yalou Ma
出处
期刊:Forests [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 1459-1459 被引量:8
标识
DOI:10.3390/f13091459
摘要

Traditional nursery seedling detection often uses manual sampling counting and height measurement with rulers. This is not only inefficient and inaccurate, but it requires many human resources for nurseries that need to monitor the growth of saplings, making it difficult to meet the fast and efficient management requirements of modern forestry. To solve this problem, this paper proposes a real-time seedling detection framework based on an improved YoloV4 network and binocular camera, which can provide real-time measurements of the height and number of saplings in a nursery quickly and efficiently. The methodology is as follows: (i) creating a training dataset using a binocular camera field photography and data augmentation; (ii) replacing the backbone network of YoloV4 with Ghostnet and replacing the normal convolutional blocks of PANet in YoloV4 with depth-separable convolutional blocks, which will allow the Ghostnet–YoloV4 improved network to maintain efficient feature extraction while massively reducing the number of operations for real-time counting; (iii) integrating binocular vision technology into neural network detection to perform the real-time height measurement of saplings; and (iv) making corresponding parameter and equipment adjustments based on the specific morphology of the various saplings, and adding comparative experiments to enhance generalisability. The results of the field testing of nursery saplings show that the method is effective in overcoming noise in a large field environment, meeting the load-carrying capacity of embedded mobile devices with low-configuration management systems in real time and achieving over 92% accuracy in both counts and measurements. The results of these studies can provide technical support for the precise cultivation of nursery saplings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling完成签到,获得积分10
2秒前
2秒前
5秒前
5秒前
天天快乐应助阿宁采纳,获得10
6秒前
af应助xiao茗采纳,获得10
6秒前
7秒前
ricardo完成签到,获得积分20
7秒前
9秒前
11111发布了新的文献求助10
9秒前
pxk发布了新的文献求助10
10秒前
xty发布了新的文献求助10
11秒前
传奇3应助夏末的晨曦采纳,获得20
11秒前
沙糖桔完成签到,获得积分10
13秒前
14秒前
14秒前
晨曦发布了新的文献求助10
14秒前
Owen应助陈敏采纳,获得10
15秒前
15秒前
笨笨从安发布了新的文献求助10
18秒前
eryuepiaoling发布了新的文献求助10
19秒前
惊蛰完成签到 ,获得积分10
19秒前
玄策发布了新的文献求助10
19秒前
wendy应助李乐安采纳,获得20
20秒前
王三歲发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
鲤鱼棒棒糖完成签到 ,获得积分10
22秒前
22秒前
Momo给Momo的求助进行了留言
24秒前
ycc发布了新的文献求助10
25秒前
Marlo发布了新的文献求助10
25秒前
弟斯拉发布了新的文献求助10
27秒前
28秒前
pluto应助玄策采纳,获得10
28秒前
pluto应助玄策采纳,获得10
28秒前
28秒前
一一应助kookery采纳,获得10
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870508
求助须知:如何正确求助?哪些是违规求助? 3412737
关于积分的说明 10680838
捐赠科研通 3137151
什么是DOI,文献DOI怎么找? 1730602
邀请新用户注册赠送积分活动 834253
科研通“疑难数据库(出版商)”最低求助积分说明 781073