Novel 15N Metabolic Labeling-Based Large-Scale Absolute Quantitative Proteomics Method for Corynebacterium glutamicum

谷氨酸棒杆菌 蛋白质组 化学 定量蛋白质组学 蛋白质组学 计算生物学 底盘 生物化学 生物系统 生化工程 生物 基因 结构工程 工程类
作者
Qichen Cao,Manman Han,Zuoqing Zhang,Chang Ho Yu,Lida Xu,Tuo Shi,Ping Zheng,Jibin Sun
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (11): 4829-4833 被引量:1
标识
DOI:10.1021/acs.analchem.2c05524
摘要

With fast growth, synthetic biology powers us with the capability to produce high commercial value products in an efficient resource/energy-consuming manner. Comprehensive knowledge of the protein regulatory network of a bacterial host chassis, e.g., the actual amount of the given proteins, is the key to building cell factories for certain target hyperproduction. Many talent methods have been introduced for absolute quantitative proteomics. However, for most cases, a set of reference peptides with isotopic labeling (e.g., SIL, AQUA, QconCAT) or a set of reference proteins (e.g., commercial UPS2 kit) needs to be prepared. The higher cost hinders these methods for large sample research. In this work, we proposed a novel metabolic labeling-based absolute quantification approach (termed nMAQ). The reference Corynebacterium glutamicum strain is metabolically labeled with 15N, and a set of endogenous anchor proteins of the reference proteome is quantified by chemically synthesized light (14N) peptides. The prequantified reference proteome was then utilized as an internal standard (IS) and spiked into the target (14N) samples. SWATH-MS analysis is performed to obtain the absolute expression levels of the proteins from the target cells. The cost for nMAQ is estimated to be less than 10 dollars per sample. We have benchmarked the quantitative performance of the novel method. We believe this method will help with the deep understanding of the intrinsic regulatory mechanism of C. glutamicum during bioengineering and will promote the process of building cell factories for synthetic biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gerry发布了新的文献求助10
1秒前
坦率晓霜发布了新的文献求助20
2秒前
2秒前
生医工小学生应助彭鑫采纳,获得50
2秒前
迷人路灯发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
kousaidzx完成签到,获得积分10
3秒前
yu完成签到,获得积分10
3秒前
酷波er应助柯岩任采纳,获得10
3秒前
3秒前
lbl完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
clown发布了新的文献求助10
5秒前
无忧无虑完成签到 ,获得积分10
5秒前
david完成签到 ,获得积分10
5秒前
逃跑的炸鸡完成签到 ,获得积分10
6秒前
hey发布了新的文献求助10
6秒前
6秒前
6秒前
一川发布了新的文献求助10
6秒前
yu发布了新的文献求助10
7秒前
琴生发布了新的文献求助10
8秒前
韶雁开完成签到,获得积分10
8秒前
QDD完成签到,获得积分20
9秒前
不安雁菱发布了新的文献求助10
9秒前
林中漫发布了新的文献求助10
9秒前
9秒前
华听白发布了新的文献求助10
10秒前
迷雾完成签到,获得积分10
10秒前
科研通AI5应助坦率易烟采纳,获得10
10秒前
10秒前
11秒前
大模型应助深情海安采纳,获得10
11秒前
11秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835479
求助须知:如何正确求助?哪些是违规求助? 3377803
关于积分的说明 10500774
捐赠科研通 3097386
什么是DOI,文献DOI怎么找? 1705784
邀请新用户注册赠送积分活动 820705
科研通“疑难数据库(出版商)”最低求助积分说明 772219