Research on the construction of event logic knowledge graph of supply chain management

计算机科学 联营 人工智能 事件(粒子物理) 图形 本体论 自然语言处理 理论计算机科学 量子力学 认识论 物理 哲学
作者
Jianfeng Deng,Chong Chen,Xinyi Huang,Wenyan Chen,Lianglun Cheng
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:56: 101921-101921 被引量:37
标识
DOI:10.1016/j.aei.2023.101921
摘要

Knowledge graph technology plays an important role in knowledge supporting for efficient supply chain management (SCM) of manufacturing enterprises, a SCM knowledge graph can be constructed based on the relevant case corpus. In order to solve the problems of coarse concept granularity of event ontology knowledge in SCM cases, potential words of characters in the existing entity recognition models may not be matched or matched incorrectly, key features of entities with different lengths may interfere with each other in the expression of attention mechanism, and lack of a large number of annotation training samples, a top-down construction method of SCM event logic knowledge graph (ELKG) is proposed. Firstly, SCM event argument classes and class relations are defined, an event logic ontology model is built, and the event argument entities according to event logic ontology are labeled. Then, an active learning event argument entity recognition (EAER) model based on two-stage generative adversarial network (GAN) is proposed. In GAN generator, an EAER model based on binocular attention-based stacked BiLSTM with CNN (BACSBN) is proposed, which combines word-level character feature attention mechanism and n-gram pooling feature attention mechanism to improve the attention to character features of constituent words and highlight entity key information with different lengths, respectively. Two-stage GAN adversarial training and label space attention mechanism are introduced to select the correct predicted label samples for active learning training. The experimental results show that BACSBN can improve the entity recognition accuracy, and the two-stage GAN’s active learning can further improve the recognition effect on the basis of full annotation sample training, and can still maintain a high accuracy in the absence of a large number of manual annotation data. Further, according to the sentence pattern and keyword matching, the matching relations of argument entities are completed, and the SCM ELKG is constructed to provide knowledge support for autonomous SCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LL发布了新的文献求助10
刚刚
信号灯发布了新的文献求助10
1秒前
highlight发布了新的文献求助10
1秒前
1秒前
王子怡发布了新的文献求助10
3秒前
知秋发布了新的文献求助10
4秒前
4秒前
英俊的铭应助JoJo采纳,获得10
4秒前
开朗涔完成签到,获得积分10
5秒前
王zhuo关注了科研通微信公众号
6秒前
大聪明应助三百采纳,获得10
7秒前
羊羊的蛙完成签到,获得积分20
7秒前
Jyy77完成签到 ,获得积分10
7秒前
嘻嘻哈哈应助秀秀采纳,获得10
7秒前
嘻嘻哈哈应助秀秀采纳,获得10
7秒前
hexinyu完成签到,获得积分10
10秒前
高贵的往事完成签到,获得积分10
10秒前
10秒前
打打应助highlight采纳,获得10
12秒前
WAHAHAoo完成签到,获得积分10
14秒前
浮游应助asdfqwer采纳,获得10
14秒前
14秒前
14秒前
蜜桃小丸子完成签到 ,获得积分10
15秒前
15秒前
万松完成签到,获得积分10
16秒前
qianchen发布了新的文献求助30
17秒前
GuGuGaGaAH发布了新的文献求助10
17秒前
JoJo发布了新的文献求助10
17秒前
学术肺雾完成签到 ,获得积分10
17秒前
冰美式不加糖完成签到,获得积分10
18秒前
科研通AI6应助1234567采纳,获得10
18秒前
慢慢发布了新的文献求助10
20秒前
20秒前
JamesPei应助科研通管家采纳,获得10
21秒前
zhonglv7应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381431
求助须知:如何正确求助?哪些是违规求助? 4504724
关于积分的说明 14019133
捐赠科研通 4413985
什么是DOI,文献DOI怎么找? 2424512
邀请新用户注册赠送积分活动 1417493
关于科研通互助平台的介绍 1395274