OriGene: A Self-Evolving Virtual Disease Biologist Automating Therapeutic Target Discovery

生物学家 计算机科学 数据科学 疾病 计算生物学 生物 医学 遗传学 病理
作者
Zhongyue Zhang,Zijie Qiu,Yingcheng Wu,Sitan Li,Dingyan Wang,Zhuomin Zhou,Duo An,Yuhan Chen,Haijun Yu,Yongbo Wang,C.-Y. Ou,Zichen Wang,J Chen,Bo Zhang,Yiwen Hu,Wenxin Zhang,Zhi-Jian Wei,Runze Ma,Qingwu Liu,Bo Dong
标识
DOI:10.1101/2025.06.03.657658
摘要

Therapeutic target discovery remains a critical yet intuition-driven bottleneck in drug develo ment, typically relying on disease biologists to laboriously integrate diverse biomedical data into testable hypotheses for experimental validation. Here, we present OriGene, a self-evolving multiagent system that functions as a virtual disease biologist, systematically identifying original and mechanistically grounded therapeutic targets at scale. OriGene coordinates specialized agents that reason over diverse modalities, including genetic data, protein networks, pharmacological profiles, clinical records, and literature evidence, to generate and prioritize target discovery hypotheses. Through a self-evolving framework, OriGene continuously integrates human and experimental feedback to iteratively refine its core thinking templates, tool composition, and analytical protocols, thereby enhancing both accuracy and adaptability over time. To comprehensively evaluate its performance, we established TRQA, a benchmark comprising over 1,900 expert-level question-answer pairs spanning a wide range of diseases and target classes. OriGene consistently outperforms human experts, leading research agents, and state-of-the-art large language models in accuracy, recall, and robustness, particularly under conditions of data sparsity or noise. Critically, OriGene nominated previously underexplored therapeutic targets for liver (GPR160) and colorectal cancer (ARG2), which demonstrated significant anti-tumor activity in patient-derived organoid and tumor fragment models mirroring human clinical exposures. These findings demonstrate OriGene’s potential as a scalable and adaptive platform for AI-driven discovery of mechanistically grounded therapeutic targets, offering a new paradigm to accelerate drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kevin完成签到,获得积分10
1秒前
aikeyan完成签到,获得积分10
6秒前
俭朴的乐巧完成签到 ,获得积分10
6秒前
李爱国应助科研通管家采纳,获得10
8秒前
changping应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
和平使命应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
ll完成签到 ,获得积分10
9秒前
minnie完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
忧心的海燕完成签到 ,获得积分10
12秒前
提莫蘑菇完成签到,获得积分10
17秒前
隐形大白菜真实的钥匙完成签到,获得积分10
18秒前
无私雅柏完成签到 ,获得积分10
18秒前
18秒前
ZDM6094完成签到 ,获得积分10
19秒前
qyzhu完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
乔qiao发布了新的文献求助10
25秒前
虞曦完成签到 ,获得积分10
25秒前
26秒前
Hua完成签到,获得积分10
32秒前
zzz完成签到 ,获得积分10
32秒前
儒雅老太发布了新的文献求助10
32秒前
末末完成签到 ,获得积分10
36秒前
511完成签到 ,获得积分10
36秒前
幸运星完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助150
40秒前
Ray完成签到 ,获得积分10
42秒前
康米完成签到 ,获得积分10
44秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
49秒前
汉堡包应助土豆采纳,获得10
55秒前
量子星尘发布了新的文献求助30
55秒前
专心搞科研完成签到 ,获得积分10
1分钟前
1分钟前
失眠静珊完成签到,获得积分10
1分钟前
linger发布了新的文献求助10
1分钟前
科研牛马完成签到,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5128810
求助须知:如何正确求助?哪些是违规求助? 4331352
关于积分的说明 13494469
捐赠科研通 4167415
什么是DOI,文献DOI怎么找? 2284501
邀请新用户注册赠送积分活动 1285496
关于科研通互助平台的介绍 1226213