Addressing Limited Generalizability in Artificial Intelligence–Based Brain Aneurysm Detection for Computed Tomography Angiography: Development of an Externally Validated Artificial Intelligence Screening Platform

医学 概化理论 放射科 数字减影血管造影 前瞻性队列研究 动脉瘤 血管造影 计算机断层血管造影 外部有效性 核医学 外科 统计 数学 心理学 社会心理学
作者
Samuel D. Pettersson,Jean Filo,Peter K. Liaw,Paulina Skrzypkowska,Tomasz Klepinowski,Tomasz Szmuda,T Fodor,Felipe Ramirez‐Velandia,Piotr Zieliński,Yu‐Ming Chang,Philipp Taussky,Christopher S. Ogilvy
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
标识
DOI:10.1227/neu.0000000000003549
摘要

BACKGROUND AND OBJECTIVES: Brain aneurysm detection models, both in the literature and in industry, continue to lack generalizability during external validation, limiting clinical adoption. This challenge is largely due to extensive exclusion criteria during training data selection. The authors developed the first model to achieve generalizability using novel methodological approaches. METHODS: Computed tomography angiography (CTA) scans from 2004 to 2023 at the study institution were used for model training, including untreated unruptured intracranial aneurysms without extensive cerebrovascular disease. External validation used digital subtraction angiography–verified CTAs from an international center, while prospective validation occurred at the internal institution over 9 months. A public web platform was created for further model validation. RESULTS: A total of 2194 CTA scans were used for this study. One thousand five hundred eighty-seven patients and 1920 aneurysms with a mean size of 5.3 ± 3.7 mm were included in the training cohort. The mean age of the patients was 69.7 ± 14.9 years, and 1203 (75.8%) were female. The model achieved a training Dice score of 0.88 and a validation Dice score of 0.76. Prospective internal validation on 304 scans yielded a lesion-level (LL) sensitivity of 82.5% (95% CI: 75.5-87.9) and specificity of 89.6 (95% CI: 84.5-93.2). External validation on 303 scans demonstrated an on-par LL sensitivity and specificity of 83.5% (95% CI: 75.1-89.4) and 92.9% (95% CI: 88.8-95.6), respectively. Radiologist LL sensitivity from the external center was 84.5% (95% CI: 76.2-90.2), and 87.5% of the missed aneurysms were detected by the model. CONCLUSION: The authors developed the first publicly testable artificial intelligence model for aneurysm detection on CTA scans, demonstrating generalizability and state-of-the-art performance in external validation. The model addresses key limitations of previous efforts and enables broader validation through a web-based platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
steven完成签到 ,获得积分10
刚刚
负责灵萱完成签到 ,获得积分10
刚刚
邓李梅完成签到,获得积分20
1秒前
傻傻的哈密瓜完成签到,获得积分10
3秒前
4秒前
庭中踏雪来完成签到 ,获得积分10
7秒前
LL完成签到,获得积分10
8秒前
雨眠完成签到,获得积分10
8秒前
11号迪西馅饼完成签到,获得积分10
13秒前
小面包儿应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
Nancy发布了新的文献求助30
20秒前
26秒前
tong完成签到 ,获得积分10
27秒前
SilentLight完成签到,获得积分10
27秒前
111完成签到,获得积分10
28秒前
迅捷发布了新的文献求助10
29秒前
Wguan完成签到,获得积分10
30秒前
大媛大靳吃地瓜完成签到 ,获得积分10
31秒前
畅快的胡萝卜完成签到,获得积分10
33秒前
周杰完成签到,获得积分10
33秒前
ddstty完成签到,获得积分10
33秒前
猫的毛完成签到 ,获得积分10
36秒前
114514完成签到 ,获得积分10
38秒前
迅捷完成签到,获得积分10
39秒前
复杂的夜香完成签到 ,获得积分10
43秒前
LMY完成签到 ,获得积分10
46秒前
47秒前
xy完成签到 ,获得积分10
47秒前
49秒前
炖地瓜完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4774609
求助须知:如何正确求助?哪些是违规求助? 4107434
关于积分的说明 12705067
捐赠科研通 3828381
什么是DOI,文献DOI怎么找? 2112041
邀请新用户注册赠送积分活动 1135998
关于科研通互助平台的介绍 1019493