Diagnostic biomarkers and immune infiltration profiles common to COVID-19, acute myocardial infarction and acute ischaemic stroke using bioinformatics methods and machine learning

医学 神经学 神经化学 2019年冠状病毒病(COVID-19) 心肌梗塞 缺血性中风 神经外科 冲程(发动机) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 免疫系统 内科学 心脏病学 急性中风 重症监护医学 生物信息学 缺血 外科 免疫学 传染病(医学专业) 疾病 组织纤溶酶原激活剂 精神科 工程类 生物 机械工程
作者
Yanan Ma,Si-Rong Ma,Li Yang,Juan Wu,Yarong Wang,Lan Bao,Li Ma,Qi Wu,Zhenhai Wang
出处
期刊:BMC Neurology [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12883-025-04212-6
摘要

COVID-19 is a disease that affects people globally. Beyond affecting the respiratory system, COVID-19 patients are at an elevated risk for both venous and arterial thrombosis. This heightened risk contributes to an increased probability of acute complications, including acute myocardial infarction (AMI) and acute ischemic stroke (AIS). Given the unclear relationship between COVID-19, AMI, and AIS, it is crucial to gain a deeper understanding of their associations and potential molecular mechanisms. This study aims to utilize bioinformatics to analyze gene expression data, identify potential therapeutic targets and biomarkers, and explore the role of immune cells in the disease. This study employed three Gene Expression Omnibus (GEO) datasets for analysis, which included data on COVID-19, AMI and AIS. We performed enrichment analysis on the co-DEGs for these three diseases to clarify gene pathways and functions, and also examined the relationship between co-DEGs and immune infiltration. Machine learning techniques and protein-protein interaction networks (PPI) were used to identify hub genes within the co-DEGs. Finally, we employed a dual validation strategy integrating independent GEO datasets and in vitro experiments with human blood samples to comprehensively assess the reliability of our experimental findings. We identified 88 co-DEGs associated with COVID-19, AMI and AIS. Enrichment analysis results indicated that co-DEGs were significantly enriched in immune inflammatory responses related to leukocytes and neutrophils. Immune infiltration analysis revealed significant differences in immune cell populations between the disease group and the normal group. Finally, genes selected through machine learning methods included: CLEC4E, S100A12, and IL1R2. Based on the PPI network, the top ten most influential DEGs were identified as MMP9, TLR2, TLR4, ITGAM, S100A12, FCGR1A, CD163, FCER1G, FPR2, and CLEC4D. The integration of the protein-protein interaction (PPI) network with machine learning techniques facilitated the identification of S100A12 as a potential common biomarker for early diagnosis and a therapeutic target for all three diseases. Ultimately, validation of S100A12 showed that it was consistent with our experimental results, confirming its reliability as a biomarker. Moreover, it demonstrated good diagnostic performance for the three diseases. We employed bioinformatics methods and machine learning to investigate common diagnostic biomarkers and immune infiltration characteristics of COVID-19, AMI and AIS. Functional and pathway analyses indicated that the co-DEGs were primarily enriched in immune inflammatory responses related to leukocytes and neutrophils. Through two machine learning approaches and the PPI network, and subsequent validation and evaluation, we identified S100A12 as a potential common therapeutic target and biomarker related to immune response that may influence these three diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李欣超完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
willa发布了新的文献求助10
3秒前
kekkekh欧克发布了新的文献求助10
3秒前
鸣笛应助奇奇淼采纳,获得20
3秒前
4秒前
1_1完成签到,获得积分10
4秒前
4秒前
乾乾完成签到,获得积分10
5秒前
舒心的柏柳完成签到,获得积分20
5秒前
科研通AI5应助无误采纳,获得10
6秒前
6秒前
Ww发布了新的文献求助10
6秒前
小郭无敌帅完成签到,获得积分10
6秒前
商陆发布了新的文献求助20
7秒前
斯文败类应助漂亮的傲柔采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
shuang完成签到 ,获得积分10
9秒前
9秒前
NuyOah发布了新的文献求助10
9秒前
李欣超关注了科研通微信公众号
9秒前
mengdewen发布了新的文献求助10
10秒前
kunkun完成签到,获得积分10
10秒前
10秒前
ED发布了新的文献求助200
11秒前
无误完成签到,获得积分10
11秒前
11秒前
11秒前
搜集达人应助kekkekh欧克采纳,获得10
11秒前
12秒前
12秒前
情怀应助踏实的师采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4225218
求助须知:如何正确求助?哪些是违规求助? 3758543
关于积分的说明 11814289
捐赠科研通 3420031
什么是DOI,文献DOI怎么找? 1877024
邀请新用户注册赠送积分活动 930433
科研通“疑难数据库(出版商)”最低求助积分说明 838610