已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnostic biomarkers and immune infiltration profiles common to COVID-19, acute myocardial infarction and acute ischaemic stroke using bioinformatics methods and machine learning

医学 神经学 神经化学 2019年冠状病毒病(COVID-19) 心肌梗塞 缺血性中风 神经外科 冲程(发动机) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 免疫系统 内科学 心脏病学 急性中风 重症监护医学 生物信息学 缺血 外科 免疫学 传染病(医学专业) 疾病 组织纤溶酶原激活剂 精神科 机械工程 工程类 生物
作者
Yanan Ma,Si-Rong Ma,Li Yang,Juan Wu,Yarong Wang,Lan Bao,Li Ma,Qi Wu,Zhenhai Wang
出处
期刊:BMC Neurology [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12883-025-04212-6
摘要

COVID-19 is a disease that affects people globally. Beyond affecting the respiratory system, COVID-19 patients are at an elevated risk for both venous and arterial thrombosis. This heightened risk contributes to an increased probability of acute complications, including acute myocardial infarction (AMI) and acute ischemic stroke (AIS). Given the unclear relationship between COVID-19, AMI, and AIS, it is crucial to gain a deeper understanding of their associations and potential molecular mechanisms. This study aims to utilize bioinformatics to analyze gene expression data, identify potential therapeutic targets and biomarkers, and explore the role of immune cells in the disease. This study employed three Gene Expression Omnibus (GEO) datasets for analysis, which included data on COVID-19, AMI and AIS. We performed enrichment analysis on the co-DEGs for these three diseases to clarify gene pathways and functions, and also examined the relationship between co-DEGs and immune infiltration. Machine learning techniques and protein-protein interaction networks (PPI) were used to identify hub genes within the co-DEGs. Finally, we employed a dual validation strategy integrating independent GEO datasets and in vitro experiments with human blood samples to comprehensively assess the reliability of our experimental findings. We identified 88 co-DEGs associated with COVID-19, AMI and AIS. Enrichment analysis results indicated that co-DEGs were significantly enriched in immune inflammatory responses related to leukocytes and neutrophils. Immune infiltration analysis revealed significant differences in immune cell populations between the disease group and the normal group. Finally, genes selected through machine learning methods included: CLEC4E, S100A12, and IL1R2. Based on the PPI network, the top ten most influential DEGs were identified as MMP9, TLR2, TLR4, ITGAM, S100A12, FCGR1A, CD163, FCER1G, FPR2, and CLEC4D. The integration of the protein-protein interaction (PPI) network with machine learning techniques facilitated the identification of S100A12 as a potential common biomarker for early diagnosis and a therapeutic target for all three diseases. Ultimately, validation of S100A12 showed that it was consistent with our experimental results, confirming its reliability as a biomarker. Moreover, it demonstrated good diagnostic performance for the three diseases. We employed bioinformatics methods and machine learning to investigate common diagnostic biomarkers and immune infiltration characteristics of COVID-19, AMI and AIS. Functional and pathway analyses indicated that the co-DEGs were primarily enriched in immune inflammatory responses related to leukocytes and neutrophils. Through two machine learning approaches and the PPI network, and subsequent validation and evaluation, we identified S100A12 as a potential common therapeutic target and biomarker related to immune response that may influence these three diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elon_Wong发布了新的文献求助10
1秒前
Solomon完成签到 ,获得积分0
2秒前
2秒前
wangwei完成签到 ,获得积分10
5秒前
000完成签到 ,获得积分10
5秒前
科研通AI5应助benhzh采纳,获得10
7秒前
7秒前
10秒前
科目三应助叫滚滚采纳,获得10
12秒前
Elon_Wong完成签到,获得积分10
13秒前
我想打喷嚏完成签到,获得积分10
15秒前
Williams发布了新的文献求助10
15秒前
脑洞疼应助soso采纳,获得10
16秒前
16秒前
善学以致用应助jackdu采纳,获得10
17秒前
17秒前
Wzh完成签到,获得积分10
20秒前
希望天下0贩的0应助Williams采纳,获得10
20秒前
唠叨的天薇完成签到 ,获得积分10
21秒前
21秒前
叫滚滚发布了新的文献求助10
21秒前
benhzh发布了新的文献求助10
24秒前
小二郎应助bbdan采纳,获得10
25秒前
一双完成签到,获得积分10
26秒前
木木彡完成签到,获得积分10
27秒前
soso发布了新的文献求助10
27秒前
29秒前
小二郎应助淡淡茉莉采纳,获得30
31秒前
33秒前
jackdu发布了新的文献求助10
33秒前
35秒前
852应助fei979采纳,获得10
36秒前
FishBoooooo发布了新的文献求助30
37秒前
哈哈Ye完成签到,获得积分10
38秒前
Lucas应助ssk采纳,获得10
38秒前
39秒前
39秒前
XudongHou发布了新的文献求助10
39秒前
dodo发布了新的文献求助10
40秒前
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815420
求助须知:如何正确求助?哪些是违规求助? 3359189
关于积分的说明 10400678
捐赠科研通 3076839
什么是DOI,文献DOI怎么找? 1690041
邀请新用户注册赠送积分活动 813577
科研通“疑难数据库(出版商)”最低求助积分说明 767674