清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The Fermentation Degree Prediction Model for Tieguanyin Oolong Tea Based on Visual and Sensing Technologies

发酵 学位(音乐) 食品科学 生物系统 化学 数学 生物 物理 声学
作者
Yuyan Huang,Jian Zhao,C. Zheng,Chuanhui Li,Tao Wang,Li Xiao,Yongkuai Chen
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:14 (6): 983-983
标识
DOI:10.3390/foods14060983
摘要

The fermentation of oolong tea is a critical process that determines its quality and flavor. Current fermentation control relies on tea makers’ sensory experience, which is labor-intensive and time-consuming. In this study, using Tieguanyin oolong tea as the research object, features including the tea water loss rate, aroma, image color, and texture were obtained using weight sensors, a tin oxide-type gas sensor, and a visual acquisition system. Support vector regression (SVR), random forest (RF) machine learning, and long short-term memory (LSTM) deep learning algorithms were employed to establish models for assessing the fermentation degree based on both single features and fused multi-source features, respectively. The results showed that in the test set of the fermentation degree models based on single features, the mean absolute error (MAE) ranged from 4.537 to 6.732, the root mean square error (RMSE) ranged from 5.980 to 9.416, and the coefficient of determination (R2) values varied between 0.898 and 0.959. In contrast, the data fusion models demonstrated superior performance, with the MAE reduced to 2.232–2.783, the RMSE reduced to 2.693–3.969, and R2 increased to 0.982–0.991, confirming that feature fusion enhanced characterization accuracy. Finally, the Sparrow Search Algorithm (SSA) was applied to optimize the data fusion models. After optimization, the models exhibited a MAE ranging from 1.703 to 2.078, a RMSE from 2.258 to 3.230, and R2 values between 0.988 and 0.994 on the test set. The application of the SSA further enhanced model accuracy, with the Fusion-SSA-LSTM model demonstrating the best performance. The research results enable online real-time monitoring of the fermentation degree of Tieguanyin oolong tea, which contributes to the automated production of Tieguanyin oolong tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyx完成签到 ,获得积分10
20秒前
CodeCraft应助Benhnhk21采纳,获得10
28秒前
香蕉觅云应助太阳花采纳,获得30
30秒前
38秒前
太阳花发布了新的文献求助30
42秒前
51秒前
Benhnhk21发布了新的文献求助10
54秒前
沙海沉戈完成签到,获得积分0
1分钟前
太阳花发布了新的文献求助30
1分钟前
安琦发布了新的文献求助10
1分钟前
Benhnhk21发布了新的文献求助10
1分钟前
英俊的铭应助自然尔琴采纳,获得10
1分钟前
dashi完成签到 ,获得积分10
2分钟前
FashionBoy应助安琦采纳,获得10
2分钟前
iShine完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
雨后完成签到 ,获得积分10
3分钟前
爱静静应助Benhnhk21采纳,获得10
3分钟前
wangermazi完成签到,获得积分0
3分钟前
方白秋完成签到,获得积分10
3分钟前
杪夏二八完成签到 ,获得积分10
3分钟前
4分钟前
鱼头发布了新的文献求助10
4分钟前
chcmy完成签到 ,获得积分0
4分钟前
iman发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
子平完成签到 ,获得积分0
5分钟前
cadcae完成签到,获得积分10
5分钟前
先锋完成签到 ,获得积分0
6分钟前
lingling完成签到 ,获得积分10
6分钟前
6分钟前
自然尔琴发布了新的文献求助10
6分钟前
7分钟前
mashibeo完成签到,获得积分10
7分钟前
大模型应助mia采纳,获得10
7分钟前
爱静静应助Benhnhk21采纳,获得10
7分钟前
害羞的裘完成签到 ,获得积分10
7分钟前
8分钟前
mia发布了新的文献求助10
8分钟前
娟儿完成签到 ,获得积分10
8分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800936
求助须知:如何正确求助?哪些是违规求助? 3346489
关于积分的说明 10329439
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681328
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714