Research on the reconstruction method of two adjacent object speckle images based on DCGAN

斑点图案 对象(语法) 材料科学 计算机视觉 计算机科学 人工智能
作者
Yanzhu Zhang,马倩龙 马,Zhe Yin,Fan Yang Yang,Tingxue Li
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:100 (9): 096005-096005
标识
DOI:10.1088/1402-4896/add190
摘要

Abstract In recent years, deep learning has been successfully applied to the reconstruction of speckle images formed through scattering media. However, most research on imaging through scattering media has mainly focused on reconstructing images of a single object, where the object’s information can be extracted from a single speckle using convolutional neural networks. Reconstructing images of multiple objects from a single speckle is more important and challenging, as the information of the objects becomes highly mixed during the light propagation process. Moreover, in the speckle imaging process, most neural networks are trained to predict pixel-by-pixel, treating each pixel of the image independently. This can lead to a lack of spatial continuity in the final result. To achieve better performance, the network should not only focus on the class features of each pixel value but also consider enhancing the visual appearance of the reconstructed image. In this paper, a CNN and GAN-based network model is designed for speckle image reconstruction. The model consists of an encoder and two decoders. A network called DCGAN (Double_CNN_GAN) is proposed to reconstruct speckle patterns. By using DCGAN, we achieve high-fidelity simultaneous reconstruction of two different binary or grayscale object images located behind the scattering medium. Additionally, the influence of the distance between the two objects on the reconstruction quality is explored. Therefore, the study of methods for reconstructing the speckle images of two adjacent objects is of significant theoretical and practical importance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小卢完成签到,获得积分10
刚刚
刚刚
追寻思雁完成签到,获得积分10
刚刚
文慧发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
little_forest发布了新的文献求助10
2秒前
2秒前
李健的小迷弟应助柳沙鸣采纳,获得10
3秒前
3秒前
3秒前
Khr1stINK发布了新的文献求助10
3秒前
甜甜千兰完成签到,获得积分10
3秒前
4秒前
科研通AI6应助yangyang采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
科研通AI6应助是希希啊a采纳,获得10
5秒前
wn2020wn完成签到,获得积分10
6秒前
6秒前
路遇惊鸿发布了新的文献求助10
7秒前
8秒前
自然的致远完成签到,获得积分10
8秒前
结实缘郡发布了新的文献求助10
8秒前
yiyi发布了新的文献求助10
8秒前
9秒前
mmmmm发布了新的文献求助10
9秒前
木木贴地飞行完成签到,获得积分10
9秒前
9秒前
10秒前
华仔应助坚定白卉采纳,获得10
11秒前
Akim应助baibaibai采纳,获得10
11秒前
11秒前
Xiong发布了新的文献求助10
11秒前
大Doctor陈完成签到,获得积分10
12秒前
36456657应助1774181866采纳,获得10
12秒前
12秒前
lyrisly发布了新的文献求助10
13秒前
爆米花应助dayaya采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238