舍瓦内拉
化学
转化(遗传学)
希瓦氏菌属
生物化学
组合化学
细菌
基因
遗传学
生物
作者
Yixin Li,Dong Xia,Yong Xie,Rong Dong,Mingfeng Cao,Qingbiao Li,Yuanpeng Wang
摘要
Microbial electrosynthesis (MES) offers a sustainable and low-carbon approach for CO2 valorization, with Shewanella oneidensis (S. oneidensis) MR-1 identified as an ideal microbe for MES. However, no prior research has demonstrated that S. oneidensis MR-1 can directly metabolize CO2 into multicarbon (C2+) products due to its inability to perform the intracellular formate assimilation pathway. Here, we provide initial proof-of-concept evidence of direct bioelectrochemical CO2 reduction to the C4 product of malate. Specifically, the transformation of CO2 to malate attains a notable production concentration of 1.18 mmol·L-1, marking the first instance of direct C4 compound bioelectrosynthesis. Such remarkable CO2-to-C4 conversion performances are attributed to the successful implementation of dual-plasmid systems in S. oneidensis MR-1, which facilitate the overexpression of the reductive glycine pathway (Plasmid I) for assimilating CO2-derived formate and the alternative malate biosynthetic pathway (Plasmid II) to channel metabolic intermediates toward the biosynthesis of malate. Advancing CO2 valorization toward carbon-negative C2+ bioproducts, our sophisticated dual-plasmid systems engineered in microbes can be further refined for scalable CO2 bioelectrolysis with the objective of facilitating industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI