A review on deep learning in planetary gearbox health state recognition: methods, applications, and dataset publication

深度学习 计算机科学 人工智能 卷积神经网络 断层(地质) 机器学习 玻尔兹曼机 人工神经网络 自编码 地震学 地质学
作者
Dongdong Liu,Lingli Cui,Weidong Cheng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 012002-012002 被引量:129
标识
DOI:10.1088/1361-6501/acf390
摘要

Abstract Planetary gearboxes have various merits in mechanical transmission, but their complex structure and intricate operation modes bring large challenges in terms of fault diagnosis. Deep learning has attracted increasing attention in intelligent fault diagnosis and has been successfully adopted for planetary gearbox fault diagnosis, avoiding the difficulty in manually analyzing complex fault features with signal processing methods. This paper presents a comprehensive review of deep learning-based planetary gearbox health state recognition. First, the challenges caused by the complex vibration characteristics of planetary gearboxes in fault diagnosis are analyzed. Second, according to the popularity of deep learning in planetary gearbox fault diagnosis, we briefly introduce six mainstream algorithms, i.e. autoencoder, deep Boltzmann machine, convolutional neural network, transformer, generative adversarial network, and graph neural network, and some variants of them. Then, the applications of these methods to planetary gearbox fault diagnosis are reviewed. Finally, the research prospects and challenges in this research are discussed. According to the challenges, a dataset is introduced in this paper to facilitate future investigations. We expect that this paper can provide new graduate students, institutions and companies with a preliminary understanding of methods used in this field. The dataset can be downloaded from https://github.com/Liudd-BJUT/WT-planetary-gearbox-dataset .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慧眼痴心完成签到,获得积分10
2秒前
蚂蚁给蚂蚁的求助进行了留言
3秒前
3秒前
爆米花应助萨阿呢采纳,获得10
4秒前
柳德焕发布了新的文献求助10
5秒前
猫咪完成签到 ,获得积分10
7秒前
传奇3应助asd_1采纳,获得10
7秒前
7秒前
脑洞疼应助sssssxxxx采纳,获得10
7秒前
7秒前
隐形曼青应助sssssxxxx采纳,获得10
8秒前
zz完成签到,获得积分10
8秒前
胡平完成签到,获得积分10
8秒前
8秒前
8秒前
666发布了新的文献求助10
9秒前
李健应助萨阿呢采纳,获得10
9秒前
9秒前
salvage发布了新的文献求助10
9秒前
10秒前
洪武完成签到,获得积分10
10秒前
Bob完成签到,获得积分10
11秒前
如意白猫发布了新的文献求助10
14秒前
15秒前
筱玉完成签到,获得积分10
16秒前
认真的冬易完成签到 ,获得积分10
16秒前
拼搏半梦发布了新的文献求助10
19秒前
21秒前
22秒前
HS215完成签到,获得积分10
23秒前
23秒前
瑾木完成签到,获得积分10
23秒前
24秒前
万能图书馆应助如意白猫采纳,获得10
25秒前
25秒前
席白玉发布了新的文献求助10
26秒前
asd_1发布了新的文献求助10
26秒前
充电宝应助西西采纳,获得10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284616
求助须知:如何正确求助?哪些是违规求助? 4438006
关于积分的说明 13815772
捐赠科研通 4319052
什么是DOI,文献DOI怎么找? 2370833
邀请新用户注册赠送积分活动 1366174
关于科研通互助平台的介绍 1329640