霍普夫分叉
竞赛(生物学)
平衡点
理论(学习稳定性)
竞争模式
人口
数学
分叉
竞争排斥
应用数学
分岔理论
控制理论(社会学)
统计物理学
经济
数理经济学
物理
生态学
数学分析
计算机科学
生物
微分方程
非线性系统
人口学
微观经济学
社会学
利润(经济学)
控制(管理)
管理
量子力学
机器学习
作者
Xiaolan Wang,Chanaka Kottegoda,Chunhua Shan,Qihua Huang
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2023-09-20
卷期号:29 (4): 1798-1814
被引量:4
标识
DOI:10.3934/dcdsb.2023156
摘要
One of the shortcomings of the classical Lotka-Volterra competition model is that both species' births are assumed to be instantaneous, whereas developmental and maturation processes may cause time delays. We extend the Lotka-Volterra competition model to a delayed model based on a single species delayed model in this paper. The effects of two discrete delays on competition outcomes are investigated. Our theoretical and numerical results show that delays can cause the loss of stability of equilibria and the emergence of periodic solutions (i.e., population density oscillations) via Hopf bifurcation, lead to exclusion by changing the stability of coexistence equilibrium, and boost coexistence even if the coexistence equilibrium point does not exist.
科研通智能强力驱动
Strongly Powered by AbleSci AI