清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FE2 Computations with Deep Neural Networks: Algorithmic Structure, Data Generation, and Implementation

计算 人工神经网络 计算机科学 深度学习 人工智能 加速 计算机工程 算法 机器学习 计算科学 并行计算
作者
Hamidreza Eivazi,Jendrik‐Alexander Tröger,Stefan Wittek,Stefan Hartmann,Andreas Rausch
出处
期刊:Mathematical and computational applications [Multidisciplinary Digital Publishing Institute]
卷期号:28 (4): 91-91 被引量:8
标识
DOI:10.3390/mca28040091
摘要

Multiscale FE2 computations enable the consideration of the micro-mechanical material structure in macroscopical simulations. However, these computations are very time-consuming because of numerous evaluations of a representative volume element, which represents the microstructure. In contrast, neural networks as machine learning methods are very fast to evaluate once they are trained. Even the DNN-FE2 approach is currently a known procedure, where deep neural networks (DNNs) are applied as a surrogate model of the representative volume element. In this contribution, however, a clear description of the algorithmic FE2 structure and the particular integration of deep neural networks are explained in detail. This comprises a suitable training strategy, where particular knowledge of the material behavior is considered to reduce the required amount of training data, a study of the amount of training data required for reliable FE2 simulations with special focus on the errors compared to conventional FE2 simulations, and the implementation aspect to gain considerable speed-up. As it is known, the Sobolev training and automatic differentiation increase data efficiency, prediction accuracy and speed-up in comparison to using two different neural networks for stress and tangent matrix prediction. To gain a significant speed-up of the FE2 computations, an efficient implementation of the trained neural network in a finite element code is provided. This is achieved by drawing on state-of-the-art high-performance computing libraries and just-in-time compilation yielding a maximum speed-up of a factor of more than 5000 compared to a reference FE2 computation. Moreover, the deep neural network surrogate model is able to overcome load-step size limitations of the RVE computations in step-size controlled computations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
6秒前
krathhong完成签到 ,获得积分10
7秒前
22秒前
格格完成签到 ,获得积分10
36秒前
小文殊完成签到 ,获得积分10
44秒前
沉静皮带完成签到 ,获得积分10
56秒前
曾经不言完成签到 ,获得积分10
1分钟前
yzhilson完成签到 ,获得积分10
1分钟前
jessie完成签到 ,获得积分10
1分钟前
风秋杨完成签到 ,获得积分10
1分钟前
晚灯君完成签到 ,获得积分10
1分钟前
雪妮完成签到 ,获得积分10
1分钟前
FloppyWow完成签到 ,获得积分10
1分钟前
孙严青完成签到,获得积分10
1分钟前
DMA50完成签到 ,获得积分10
2分钟前
乐观的星月完成签到 ,获得积分10
2分钟前
无花果应助科研通管家采纳,获得30
2分钟前
新奇完成签到 ,获得积分10
2分钟前
背书强完成签到 ,获得积分10
2分钟前
科研通AI5应助美好柚子采纳,获得10
2分钟前
2分钟前
美好柚子发布了新的文献求助10
3分钟前
喔喔佳佳L完成签到 ,获得积分10
3分钟前
夜倾心完成签到,获得积分10
3分钟前
妇产科医生完成签到 ,获得积分10
3分钟前
前程似锦完成签到 ,获得积分10
4分钟前
kk2024完成签到,获得积分10
4分钟前
CRANE完成签到 ,获得积分10
4分钟前
叶问夏完成签到 ,获得积分10
5分钟前
5分钟前
yjy完成签到 ,获得积分10
5分钟前
科研狗完成签到 ,获得积分10
5分钟前
5分钟前
带鱼的笔芯完成签到,获得积分20
5分钟前
欢呼的茗茗完成签到 ,获得积分10
5分钟前
zhdjj完成签到 ,获得积分10
5分钟前
6分钟前
糊涂涂子发布了新的文献求助10
6分钟前
momo完成签到,获得积分10
6分钟前
asdwind完成签到,获得积分10
6分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804223
求助须知:如何正确求助?哪些是违规求助? 3349045
关于积分的说明 10341196
捐赠科研通 3065188
什么是DOI,文献DOI怎么找? 1682974
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600