计算机科学
概率潜在语义分析
情态动词
语义学(计算机科学)
图形
人工智能
语义数据模型
IDEF1X
数据建模
情报检索
稳健性(进化)
自然语言处理
数据挖掘
机器学习
领域知识
理论计算机科学
数据库
化学
高分子化学
生物化学
基于本体的数据集成
基因
程序设计语言
作者
Ruiqing Xu,Wolfgang Mayer,Hailong Chu,Yitao Zhang,Hongyu Zhang,Yulong Wang,Youfa Liu,Zaiwen Feng
标识
DOI:10.1016/j.patrec.2023.11.014
摘要
Analyzing and modeling the implicit semantic relationships in data sources is the key to achieving integration and sharing of heterogeneous data information. However, manual modeling of data semantics is a laborious and error-prone task that demands significant human effort and expertise. The paper proposes a novel explainable representation learning-based method that adopts an attention-based table-graph cross-modal retrieval model as a rating function during incremental search for automatic semantic modeling. Our supervised model utilizes the graph representation learning technique to extract latent semantics from data and aims to retrieve the most reliable semantic model for structured data sources. Experimental results demonstrate the effectiveness and robustness of our method.
科研通智能强力驱动
Strongly Powered by AbleSci AI