YOLOv10: Real-Time End-to-End Object Detection

端到端原则 计算机科学 死胡同 对象(语法) 人工智能 数学 几何学 流量(数学)
作者
Ao Wang,Hui Chen,Lihao Liu,Kai Chen,Zijia Lin,Jungong Han,Guiguang Ding
出处
期刊:Cornell University - arXiv 被引量:199
标识
DOI:10.48550/arxiv.2405.14458
摘要

Over the past years, YOLOs have emerged as the predominant paradigm in the field of real-time object detection owing to their effective balance between computational cost and detection performance. Researchers have explored the architectural designs, optimization objectives, data augmentation strategies, and others for YOLOs, achieving notable progress. However, the reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs and adversely impacts the inference latency. Besides, the design of various components in YOLOs lacks the comprehensive and thorough inspection, resulting in noticeable computational redundancy and limiting the model's capability. It renders the suboptimal efficiency, along with considerable potential for performance improvements. In this work, we aim to further advance the performance-efficiency boundary of YOLOs from both the post-processing and model architecture. To this end, we first present the consistent dual assignments for NMS-free training of YOLOs, which brings competitive performance and low inference latency simultaneously. Moreover, we introduce the holistic efficiency-accuracy driven model design strategy for YOLOs. We comprehensively optimize various components of YOLOs from both efficiency and accuracy perspectives, which greatly reduces the computational overhead and enhances the capability. The outcome of our effort is a new generation of YOLO series for real-time end-to-end object detection, dubbed YOLOv10. Extensive experiments show that YOLOv10 achieves state-of-the-art performance and efficiency across various model scales. For example, our YOLOv10-S is 1.8$\times$ faster than RT-DETR-R18 under the similar AP on COCO, meanwhile enjoying 2.8$\times$ smaller number of parameters and FLOPs. Compared with YOLOv9-C, YOLOv10-B has 46\% less latency and 25\% fewer parameters for the same performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yqq完成签到 ,获得积分10
1秒前
星辰大海应助米米米采纳,获得10
2秒前
三个哈卡完成签到,获得积分10
2秒前
moon完成签到,获得积分10
3秒前
聋哑时代发布了新的文献求助10
4秒前
薯片发布了新的文献求助10
5秒前
丘比特应助Brightan采纳,获得10
5秒前
阿白完成签到 ,获得积分10
5秒前
3237924531完成签到,获得积分10
5秒前
木夕关注了科研通微信公众号
7秒前
充电宝应助拉姆采纳,获得10
10秒前
聋哑时代完成签到,获得积分20
10秒前
GRJ驳回了DDDDJ应助
11秒前
13秒前
Hello应助武雨寒采纳,获得10
15秒前
冷静如柏完成签到,获得积分10
15秒前
清爽达完成签到 ,获得积分10
15秒前
16秒前
木夕发布了新的文献求助10
17秒前
Hello应助坚定涵柏采纳,获得10
19秒前
科研巨星发布了新的文献求助10
19秒前
lxlcx发布了新的文献求助10
20秒前
隐形曼青应助嗷呜采纳,获得10
21秒前
小蘑菇应助科研巨星采纳,获得10
23秒前
夜枫完成签到 ,获得积分10
26秒前
cui完成签到,获得积分10
30秒前
30秒前
甜美梦槐完成签到,获得积分10
31秒前
所所应助武雨寒采纳,获得10
31秒前
34秒前
坚定涵柏发布了新的文献求助10
35秒前
Willer完成签到,获得积分10
36秒前
qin完成签到,获得积分10
39秒前
华仔应助陈爱佳采纳,获得10
41秒前
41秒前
嗷呜发布了新的文献求助10
41秒前
贾文斌完成签到,获得积分10
46秒前
husi完成签到,获得积分10
47秒前
50秒前
cdercder应助husi采纳,获得10
51秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843771
求助须知:如何正确求助?哪些是违规求助? 3386164
关于积分的说明 10543971
捐赠科研通 3106867
什么是DOI,文献DOI怎么找? 1711226
邀请新用户注册赠送积分活动 823978
科研通“疑难数据库(出版商)”最低求助积分说明 774409