电解
电极
电化学
聚合物电解质膜电解
制氢
传质
外推法
欧姆接触
水运
材料科学
电压
电解水
氢
环境科学
纳米技术
化学工程
化学
环境工程
工程类
电气工程
电解质
色谱法
水流
有机化学
数学
数学分析
物理化学
作者
Jason Keonhag Lee,Finn Babbe,Guanzhi Wang,Andrew W. Tricker,Rangachary Mukundan,Adam Z. Weber,Xiong Peng
出处
期刊:Joule
[Elsevier BV]
日期:2024-06-25
卷期号:8 (8): 2357-2373
被引量:13
标识
DOI:10.1016/j.joule.2024.06.005
摘要
Proton-exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production; however, interfacial transport behaviors are poorly understood, hindering device performance and longevity. Here, we first utilized finite-gap electrolyzer to demonstrate the possibility of proton transfer through water in PEMWEs. The measured high-frequency resistances (HFRs) exhibit a linear trend with increasing gap distance, where extrapolation shows a lower value compared with HFRs in regular zero-gap electrolyzers, indicating that ohmic resistance could be further reduced. We introduce nanochannels to facilitate mass transport, as evidenced by both liquid-fed and vapor-fed electrolysis. Nanochannel electrodes achieve a voltage reduction of 190 mV at 9 A·cm−2 compared with the Ir-PTEs without nanochannels. Furthermore, nanochannel electrodes show negligible degradation through 100,000 accelerated-stress tests and over 2,000 h of operation at 1.8 A·cm−2 with a decay rate of 11.66 μV·h−1. These results provide new insights into localized transport dynamics for PEMWEs and highlight the significance of interfacial engineering for electrochemical devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI