化学
氧化还原
组合化学
纳米技术
有机化学
材料科学
作者
Lu Yu,Dongyao Li,Chunmiao Ma,Brice Kauffmann,Sibei Liao,Quan Gan
摘要
In this study, we demonstrate that an aromatic oligoamide sequence assembles into a trimeric helix-turn-helix architecture with a disulfide linkage, and upon cleavage of this linkage, it reconstructs into an antiparallel double helix. The antiparallel double helix is accessible to encapsulate a diacid guest within its cavity, forming a 2:1 host–guest complex. In contrast, hydrogen-bonding interactions between the trimeric-assembled structure and guests induce a conformational shift in the trimeric helix, resulting in a cross-shaped double-helix complex at a 2:2 host–guest ratio. Interconversions between the trimeric helix and the antiparallel double helix, along with their respective host–guest complexes, can be initiated through thiol/disulfide redox-mediated regulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI