Flooded cropland mapping based on GF-3 and Mapbox imagery using semantic segmentation: a case study of Typhoon Siamba in western Guangdong in July 2022

台风 遥感 环境科学 大洪水 鉴定(生物学) 计算机科学 气象学 地理 植物 考古 生物
作者
Mengjun Ku,Hao Jiang,Dan Li,Chongyang Wang
标识
DOI:10.1117/12.2667422
摘要

Typhoon Siamba made landfall in western Guangdong on July 2, 2022, causing great losses to crops in western Guangdong. Radar remote sensing can penetrate through clouds and fog and is suitable for identifying flooded areas before or after typhoons and in rainy weather. However, radar flooded waterbody mapping faces two major problems: distinguishing between flooded areas and natural waterbody, and the other is noise interference from confusing ground objects. Aiming at these problems, the study proposes a method of high-precision cropland information combined with waterbody identification. Based on GF-3 and Mapbox data, this paper first uses watershed semantic segmentation to extract initial waterbody, then uses SegFormer deep learning technology to identify cropland, and finally realizes flooded cropland mapping based on cropland information. This study concluded that the affected cropland in Zhanjiang and Maoming City, Guangdong Province, China is 75.437 km2 and 31.175 km2 respectively. The cropland extraction accuracy and Intersection over Union (IoU) are 96.65% and 92.64% respectively. The study shows that flood monitoring combined with cropland identification information can effectively avoid noise interference and accurately extract the flood range, and achieve high-precision flooded cropland mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
热心市民应助科研通管家采纳,获得10
2秒前
2秒前
可爱的函函应助蒙豆儿采纳,获得10
2秒前
lemon发布了新的文献求助10
4秒前
6秒前
jun发布了新的文献求助20
7秒前
helium发布了新的文献求助10
7秒前
科研通AI5应助青鸟采纳,获得10
9秒前
Orange应助jmchen采纳,获得10
9秒前
万能图书馆应助赫连紫采纳,获得10
9秒前
lee发布了新的文献求助10
10秒前
10秒前
Olivia发布了新的文献求助10
11秒前
view关注了科研通微信公众号
12秒前
科研通AI5应助飘逸书易采纳,获得10
12秒前
传奇3应助MrX采纳,获得10
12秒前
bkagyin应助Os1采纳,获得30
15秒前
mmmm完成签到,获得积分10
15秒前
15秒前
JamesPei应助Conccuc采纳,获得10
16秒前
17秒前
Lds发布了新的文献求助10
18秒前
19秒前
绿毛怪完成签到,获得积分10
19秒前
helium完成签到,获得积分10
19秒前
宋琪琪完成签到,获得积分10
20秒前
21秒前
七七七发布了新的文献求助10
21秒前
21秒前
莫道雪落奈何完成签到,获得积分10
22秒前
循环bug发布了新的文献求助10
22秒前
丘比特应助自然松采纳,获得10
23秒前
24秒前
25秒前
飘逸书易发布了新的文献求助10
27秒前
view发布了新的文献求助10
28秒前
科研通AI5应助w123采纳,获得10
28秒前
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225