Analysis and Forecast of Traffic Flow between Urban Functional Areas Based on Ride-Hailing Trajectories

流量(计算机网络) 计算机科学 运输工程 卷积神经网络 图形 交通拥挤 流量(数学) 人工智能 工程类 数学 计算机网络 理论计算机科学 几何学
作者
Zhuhua Liao,Huixian Huang,Yijiang Zhao,Yizhi Liu,Guoqiang Zhang
出处
期刊:ISPRS international journal of geo-information [Multidisciplinary Digital Publishing Institute]
卷期号:12 (4): 144-144 被引量:5
标识
DOI:10.3390/ijgi12040144
摘要

Urban planning and function layout have important implications for the journeys of a large percentage of commuters, which often make up the majority of daily traffic in many cities. Therefore, the analysis and forecast of traffic flow among urban functional areas are of great significance for detecting urban traffic flow directions and traffic congestion causes, as well as helping commuters plan routes in advance. Existing methods based on ride-hailing trajectories are relatively effective solution schemes, but they often lack in-depth analyses on time and space. In the paper, to explore the rules and trends of traffic flow among functional areas, a new spatiotemporal characteristics analysis and forecast method of traffic flow among functional areas based on urban ride-hailing trajectories is proposed. Firstly, a city is divided into areas based on the actual urban road topology, and all functional areas are generated by using areas of interest (AOI); then, according to the proximity and periodicity of inter-area traffic flow data, the periodic sequence and the adjacent sequence are established, and the topological structure is learned through graph convolutional neural (GCN) networks to extract the spatial correlation of traffic flow among functional areas. Furthermore, we propose an attention-based gated graph convolutional network (AG-GCN) forecast method, which is used to extract the temporal features of traffic flow among functional areas and make predictions. In the experiment, the proposed method is verified by using real urban traffic flow data. The results show that the method can not only mine the traffic flow characteristics among functional areas under different time periods, directions, and distances, but also forecast the spatiotemporal change trend of traffic flow among functional areas in a multi-step manner, and the accuracy of the forecasting results is higher than that of common benchmark methods, reaching 96.82%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
开心烨磊发布了新的文献求助10
2秒前
木火发布了新的文献求助10
2秒前
3秒前
3秒前
华仔应助无与伦比采纳,获得10
3秒前
善学以致用应助开心妙之采纳,获得10
3秒前
接accept完成签到 ,获得积分10
3秒前
白羽佳完成签到,获得积分10
3秒前
果汁熊发布了新的文献求助10
3秒前
陈晓秋发布了新的文献求助10
3秒前
传奇3应助Gavin采纳,获得10
4秒前
LaowuAIchirou完成签到,获得积分10
4秒前
彭于晏应助如意草丛采纳,获得10
6秒前
6秒前
6秒前
咿咿呀呀完成签到,获得积分10
7秒前
科研通AI5应助panglei采纳,获得10
7秒前
跳跃的太君完成签到,获得积分10
8秒前
Topofme完成签到,获得积分10
8秒前
8秒前
白羽佳发布了新的文献求助10
8秒前
9秒前
开心烨磊完成签到,获得积分20
9秒前
yao完成签到,获得积分10
9秒前
11秒前
沐晴完成签到,获得积分10
11秒前
11秒前
聪慧语山完成签到 ,获得积分10
11秒前
Danke发布了新的文献求助10
11秒前
尘南浔完成签到,获得积分10
11秒前
luria发布了新的文献求助200
12秒前
英俊的铭应助linjiandefeng采纳,获得10
12秒前
zhogwe完成签到,获得积分10
12秒前
平平完成签到,获得积分10
12秒前
LIBALA完成签到,获得积分10
13秒前
13秒前
椰子在长江送礼物应助Lele采纳,获得10
13秒前
情怀应助活是医大的鬼采纳,获得10
13秒前
NexusExplorer应助开心烨磊采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578