亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the properties of concrete incorporating graphene nano platelets by experimental and machine learning approaches

自适应神经模糊推理系统 人工神经网络 抗压强度 机器学习 材料科学 耐久性 石墨烯 电阻率和电导率 基因表达程序设计 弹性(材料科学) 计算机科学 人工智能 复合材料 模糊逻辑 纳米技术 工程类 模糊控制系统 电气工程
作者
Rayed Alyousef,Roz‐Ud‐Din Nassar,Muhammad Fawad,Furqan Farooq,Yaser Gamil,Taoufik Najeh
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:20: e03018-e03018 被引量:15
标识
DOI:10.1016/j.cscm.2024.e03018
摘要

Modern infrastructure requirements necessitate structural components with improved durability and strength properties. The incorporation of nanomaterials (NMs) into concrete emerges as a viable strategy to enhance both the durability and strength of the concrete. Nevertheless, the complexities inherent in these nanoscale cementitious composites are notably intricate. Traditional regression models face constraints in comprehensively capturing these intricate compositions. Thus, posing challenges in delivering precise and dependable estimations. Therefore, the current study utilized three machine learning (ML) methods, including artificial neural network (ANN), gene expression programming (GEP), and adaptive neuro-fuzzy inference system (ANFIS), in conjunction with experimental investigation to study the effect of the integration of graphene nanoplatelets (GNPs) on the electrical resistivity (ER) and compressive strength (CS) of concrete containing GNPs. Concrete containing GNPs demonstrated an improved fractional change in resistivity (FCR) and strength. The experimental measures depict that strength enhancement was notable at GNP concentrations of 0.05% and 0.1%, showcasing increases of 13.23% and 16.58%, respectively. Simultaneously, the highest observed FCR change reached −12.19% and −13%, respectively. The prediction efficacy of the three models proved to be outstanding in forecasting the characteristics of concrete containing GNPs. For CS, the GEP, ANN, and ANFIS models demonstrated impressive correlation coefficient (R) values of 0.974, 0.963, and 0.954, respectively. For electrical resistivity, the GEP, ANN, and ANFIS models exhibited high R-values of 0.999, 0.995, and 0.987, respectively. The comparative analysis of the models revealed that the GEP model delivered precise predictions for both ER and CS. The mean absolute error (MAE) of the GEP-CS model demonstrated a 14.51% reduction compared to the ANN-CS model and a substantial 48.15% improvement over the ANFIS-CS model. Similarly, the ANN-CS model displayed an MAE that was 38.14% lower compared to the ANFIS-CS model. Moreover, the MAE of the GEP-ER model demonstrated a 56.80% reduction compared to the ANN-CS model and a substantial 82.47% improvement over the ANFIS-CS model. The Shapley Additive explanation (SHAP) analysis provided that curing age exhibited the highest SHAP score. Thus, indicating its predominant contribution to CS prediction. In predicting ER, the graphene content exhibited the highest SHAP score, signifying its predominant contribution to ER estimation. This study highlights ML's accuracy in predicting the properties of concrete with graphene nanoplatelets, offering a fast and cost-effective alternative to time-consuming experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
16秒前
shhoing应助科研通管家采纳,获得10
16秒前
常有李完成签到,获得积分10
30秒前
Akashi完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
shennie发布了新的文献求助30
1分钟前
科研通AI2S应助shennie采纳,获得10
1分钟前
2分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助艺小呆采纳,获得10
2分钟前
2分钟前
momo发布了新的文献求助10
3分钟前
momo完成签到,获得积分10
4分钟前
4分钟前
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
MchemG完成签到,获得积分0
5分钟前
5分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
和风完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
淡定自中发布了新的文献求助10
6分钟前
CodeCraft应助杨柳9203采纳,获得10
6分钟前
7分钟前
dynamoo应助jqliu采纳,获得10
7分钟前
jqliu完成签到,获得积分10
7分钟前
level完成签到 ,获得积分10
7分钟前
斯文败类应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543405
求助须知:如何正确求助?哪些是违规求助? 4629504
关于积分的说明 14611266
捐赠科研通 4570834
什么是DOI,文献DOI怎么找? 2505960
邀请新用户注册赠送积分活动 1483168
关于科研通互助平台的介绍 1454578