Survey of continuous deep learning methods and techniques used for incremental learning

计算机科学 人工智能 渐进式学习 深度学习 机器学习
作者
Justin Leo,Jugal Kalita
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:582: 127545-127545 被引量:7
标识
DOI:10.1016/j.neucom.2024.127545
摘要

Neural networks and deep learning algorithms are designed to function similarly to biological synaptic structures. However, classical deep learning algorithms fail to fully capture the need for continuous learning; this has led to the advent of incremental learning. Incremental learning adds new challenges that are handled differently by modern state-of-the-art approaches. Some of these include: utilization of network memory as additional knowledge increases the size of the network, open-set recognition to be able to identify unrecognized information, and efficient knowledge distillation as most incremental learning algorithms are prone to catastrophic forgetting of previously learned knowledge. Recent advancements achieve incremental learning through a multitude of methods. Most methods are characterized by augmenting the normal algorithm of neural network training by both directly modifying the neural network structure and by adding additional learning steps. This paper analyzes and provides a comprehensive survey of existing methods and various techniques used for incremental learning. A novel categorization of the methods is also introduced based on recent trends of the state-of-the-art solutions. The study focuses on methods that provide incremental learning success as well as discusses emerging patterns in new research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助静香采纳,获得10
刚刚
1秒前
坚定亦竹完成签到,获得积分10
2秒前
2秒前
一心向雨发布了新的文献求助10
3秒前
Owen应助ordin采纳,获得10
4秒前
sober123发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
lorentzh完成签到,获得积分10
5秒前
文刀完成签到,获得积分10
5秒前
5秒前
阿南完成签到 ,获得积分10
5秒前
真实的电脑完成签到,获得积分10
5秒前
5秒前
慕青应助背水采纳,获得10
5秒前
天天快乐应助KEN采纳,获得10
6秒前
AndyLin完成签到,获得积分10
6秒前
6秒前
ikun发布了新的文献求助10
6秒前
会飞的史迪奇完成签到,获得积分10
7秒前
乐乐应助正直芒果采纳,获得10
7秒前
yujx发布了新的文献求助20
7秒前
8秒前
二十八完成签到 ,获得积分10
8秒前
桃桃淘发布了新的文献求助10
8秒前
一丢丢完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
吉寻冬完成签到,获得积分10
10秒前
10秒前
10秒前
我想静静完成签到 ,获得积分10
10秒前
情怀应助臭屁大王采纳,获得10
10秒前
辛子发布了新的文献求助10
10秒前
11秒前
11秒前
高高高完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790218
求助须知:如何正确求助?哪些是违规求助? 3334933
关于积分的说明 10272867
捐赠科研通 3051419
什么是DOI,文献DOI怎么找? 1674665
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846