有界函数
柯西分布
理论(学习稳定性)
数学
独特性
柯西边界条件
领域(数学分析)
数学分析
边界(拓扑)
Neumann边界条件
Dirichlet分布
应用数学
噪音(视频)
领域(数学)
边值问题
计算机科学
纯数学
图像(数学)
机器学习
人工智能
作者
Michael V. Klibanov,Jingzhi Li,Hongyu Liu
标识
DOI:10.1515/jiip-2023-0089
摘要
Abstract The second-order mean field games system (MFGS) in a bounded domain with the lateral Cauchy data are considered. This means that both Dirichlet and Neumann boundary data for the solution of the MFGS are given. Two Hölder stability estimates for two slightly different cases are derived. These estimates indicate how stable the solution of the MFGS is with respect to the possible noise in the lateral Cauchy data. Our stability estimates imply uniqueness. The key mathematical apparatus is the apparatus of two new Carleman estimates.
科研通智能强力驱动
Strongly Powered by AbleSci AI