Breast Cancer Diagnosis Using Texture and Shape Features in MRI

人工智能 支持向量机 乳腺摄影术 模式识别(心理学) 乳腺癌 特征提取 计算机科学 磁共振成像 纹理(宇宙学) 接收机工作特性 无线电技术 癌症 医学 放射科 机器学习 内科学 图像(数学)
作者
Pilar Castellote-Huguet,Silvia Ruiz‐España,C Gallardo Galán,José Manuel Santabárbara,Alicia M. Maceira,David Moratal
标识
DOI:10.1109/embc40787.2023.10340385
摘要

Contrast-enhanced magnetic resonance (MR) breast imaging represents a tool with great potential for the detection, evaluation and diagnosis of breast cancer (BC). Due to its high sensitivity and in combination with medical imaging biomarkers, it can overcome setbacks and limitations manifested in other diagnostic modalities such as mammography or ultrasound. In order to aid and assist clinicians in the diagnosis of BC, a methodology based on the extraction of 2D texture and 3D shape features in MR images is proposed. To categorize breast tumor malignancy, we considered its location in the coronal plane, divided into 4 quadrants (UOQ, UIQ, LOQ and LOQ), and the tumor type according to its genetic information (positive HER2 and Luminal B with negative HER2). In this regard, six different studies were conducted: one per feature type (texture and shape), as well as the combination of both features (texture + shape) for each of the two covariables (tumor type and location in the coronal plane). A dataset of 43 BC patients were considered. A radiomics approach was implemented extracting 43 texture and 17 shape features and using to train 5 different predictive models (Linear SVM, Gaussian SVM, Bagged Tree, KNN and Naïve Bayes). The highest precision result for the tumor type study (74.04% in terms of AUC) was obtained with 43 texture features. Whereas for the quadrant localization study, the highest precision result (67.99% AUC) was obtained as a combination of 3 textures and shape features. Both results were achieved with the SVM with Linear Kernel classification model.Clinical Relevance— This work emphasizes the use of quantitative biomarkers as texture and shape features in combination with machine learning techniques to aid in breast tumor malignancy diagnosis on MR imaging. Moreover, considering the location of the tumor in the coronal plane and its type according to its genetic information may improve the selection of appropriate treatments, survival rate, and quality of life for breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿仙完成签到,获得积分20
刚刚
小王完成签到,获得积分10
1秒前
贺呵呵发布了新的文献求助10
1秒前
akon完成签到,获得积分10
1秒前
1秒前
魔幻的从梦完成签到,获得积分10
2秒前
笨笨芯发布了新的文献求助10
3秒前
bkagyin应助刻苦秋烟采纳,获得10
4秒前
天津科技大学完成签到,获得积分10
4秒前
Owen应助好好好采纳,获得10
5秒前
adheret完成签到,获得积分10
7秒前
7秒前
木之木完成签到,获得积分10
7秒前
科研通AI5应助Guoshibo采纳,获得10
8秒前
科烟生完成签到,获得积分10
8秒前
伏地魔关注了科研通微信公众号
9秒前
9秒前
gy完成签到,获得积分20
9秒前
10秒前
落雪123完成签到,获得积分10
10秒前
11秒前
11秒前
隔壁海绵宝宝完成签到,获得积分10
11秒前
mengzhe完成签到,获得积分10
12秒前
12秒前
Silence完成签到 ,获得积分10
12秒前
树下的枫凉完成签到,获得积分10
12秒前
Fayth完成签到,获得积分10
13秒前
rh1006发布了新的文献求助10
14秒前
Ava应助zhscu采纳,获得10
14秒前
zx598376321完成签到,获得积分10
14秒前
14秒前
玉地关注了科研通微信公众号
14秒前
恩雁发布了新的文献求助10
14秒前
乔木木完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
大个应助摆渡翁采纳,获得10
16秒前
Wiggins完成签到,获得积分10
16秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820678
求助须知:如何正确求助?哪些是违规求助? 3363573
关于积分的说明 10423756
捐赠科研通 3081991
什么是DOI,文献DOI怎么找? 1695386
邀请新用户注册赠送积分活动 815069
科研通“疑难数据库(出版商)”最低求助积分说明 768856