A genetic algorithm with critical path-based variable neighborhood search for distributed assembly job shop scheduling problem

计算机科学 可变邻域搜索 调度(生产过程) 关键路径法 数学优化 作业车间调度 整数规划 遗传算法 线性规划 算法 元启发式 地铁列车时刻表 机器学习 数学 操作系统 工程类 系统工程
作者
Shichen Tian,Chunjiang Zhang,Jiaxin Fan,Xinyu Li,Liang Gao
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:85: 101485-101485 被引量:28
标识
DOI:10.1016/j.swevo.2024.101485
摘要

Production scheduling in distributed manufacturing systems has become an active research field, where large-sized complicated products, such as airplanes and ships, are taken as the primary focus. This paper investigates a distributed assembly job shop scheduling problem (DAJSP) which consists of two production phases. The first stage processes components in several job shops, and the second stage assembles the processed parts into final products. First, a mixed integer linear programming (MILP) model is established to describe the problem with minimizing maximum completion time and find optimal schedules for small-scale scenarios. Afterwards, a genetic algorithm with variable neighborhood search (GA-VNS) is proposed to address more complex instances, which adopts the genetic algorithm as the main framework and employs the variable neighborhood search for exploration. A problem-specific three-vector encoding scheme is designed to represent three decision-making processes of the DAJSP accordingly. To improve candidate solutions, a disjunctive graph model for DAJSP is formulated and three critical path-based neighborhood structures which directly perform on encoding vectors are designed. Numerical experiments are conducted on four groups of instances with different scales and the experimental results demonstrate the effectiveness of the proposed MILP model and GA-VNS. To sum up, the proposed GA-VNS shows the best performance on 30 instances out of 40 instances, while the superior stability has also been proved by statistical tests. In addition, two complicated DAJSP cases are abstracted from an enterprise for fabricating large complex components to further validate the GA-VNS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助MCRing采纳,获得30
刚刚
情怀应助好多鱼采纳,获得10
1秒前
1秒前
坚强哑铃完成签到,获得积分10
2秒前
沉默的香氛完成签到 ,获得积分10
2秒前
3秒前
科研通AI6应助qsh采纳,获得10
3秒前
wlscj完成签到,获得积分0
3秒前
shhoing应助张航天采纳,获得10
4秒前
羊鱼发布了新的文献求助10
4秒前
蓝天发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
沉默的冬寒完成签到 ,获得积分10
6秒前
7秒前
着急的乐荷完成签到,获得积分20
7秒前
舒心白羊完成签到,获得积分10
8秒前
8秒前
sunshine完成签到,获得积分10
9秒前
phj完成签到,获得积分10
9秒前
翻斗花园胡英俊完成签到,获得积分10
9秒前
和平港湾发布了新的文献求助10
10秒前
黑马王子发布了新的文献求助10
11秒前
Garland发布了新的文献求助10
11秒前
11秒前
森诺完成签到 ,获得积分10
12秒前
cc发布了新的文献求助10
13秒前
所所应助笑点低白羊采纳,获得10
13秒前
yurh发布了新的文献求助10
14秒前
14秒前
14秒前
在水一方应助芙蕖星星采纳,获得10
16秒前
Lucas应助cc采纳,获得10
16秒前
16秒前
夏雨完成签到,获得积分10
16秒前
libz完成签到,获得积分20
17秒前
17秒前
英俊的铭应助曲听安采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535849
求助须知:如何正确求助?哪些是违规求助? 4623645
关于积分的说明 14588121
捐赠科研通 4564162
什么是DOI,文献DOI怎么找? 2501473
邀请新用户注册赠送积分活动 1480430
关于科研通互助平台的介绍 1451766