Predicting the thermal protective performance of flame-retardant fabric based on machine learning

阻燃剂 服装 可视化 热的 排名(信息检索) 机器学习 均方误差 计算机科学 人工智能 工程类 材料科学 复合材料 数学 统计 气象学 物理 考古 历史
作者
Boyi Li,Miao Tian,Xiaohan Liu,Jun Li,Yun Su,Jiaming Ni
出处
期刊:International Journal of Clothing Science and Technology [Emerald (MCB UP)]
卷期号:36 (2): 226-240
标识
DOI:10.1108/ijcst-12-2022-0175
摘要

Purpose The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors affecting the TPP using model visualization. Design/methodology/approach A total of 13 machine learning models were trained by collecting 414 datasets of typical flame-retardant fabric from current literature. The optimal performance model was used for feature importance ranking and correlation variable analysis through model visualization. Findings Five models with better performance were screened, all of which showed R2 greater than 0.96 and root mean squared error less than 3.0. Heat map results revealed that the TPP of fabrics differed significantly under different types of thermal exposure. The effect of fabric weight was more apparent in the flame or low thermal radiation environment. The increase in fabric weight, fabric thickness, air gap width and relative humidity of the air gap improved the TPP of the fabric. Practical implications The findings suggested that the visual analysis method of machine learning can intuitively understand the change trend and range of second-degree burn time under the influence of multiple variables. The established models can be used to predict the TPP of fabrics, providing a reference for researchers to carry out relevant research. Originality/value The findings of this study contribute directional insights for optimizing the structure of thermal protective clothing, and introduce innovative perspectives and methodologies for advancing heat transfer modeling in thermal protective clothing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小乐发布了新的文献求助150
1秒前
光轮2000完成签到 ,获得积分10
1秒前
pluto应助无语的蛋堡采纳,获得10
2秒前
丘比特应助Sora采纳,获得10
2秒前
邓佳鑫Alan应助ws采纳,获得10
3秒前
慕青应助hgm采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI6应助研友_ZG4ml8采纳,获得10
5秒前
张瑞发布了新的文献求助10
5秒前
kaka完成签到 ,获得积分10
5秒前
6秒前
6秒前
英姑应助杨钧贺采纳,获得10
8秒前
菲比完成签到 ,获得积分10
8秒前
8秒前
闯一闯发布了新的文献求助30
8秒前
11秒前
隐形曼青应助jinzhen采纳,获得10
12秒前
义气玫瑰发布了新的文献求助10
12秒前
华仔应助Li采纳,获得10
13秒前
bkagyin应助雷培采纳,获得10
15秒前
stuffmatter完成签到,获得积分0
15秒前
Mr完成签到,获得积分10
16秒前
16秒前
细腻戒指完成签到,获得积分20
16秒前
派大星完成签到 ,获得积分10
18秒前
文静千愁发布了新的文献求助10
19秒前
hgm发布了新的文献求助10
19秒前
19秒前
19秒前
三十三完成签到,获得积分10
20秒前
周俊俊完成签到,获得积分10
20秒前
citywalk发布了新的文献求助30
21秒前
21秒前
22秒前
大个应助热心傲珊采纳,获得10
22秒前
阳光的道消完成签到,获得积分10
23秒前
23秒前
领导范儿应助假面绅士采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533604
求助须知:如何正确求助?哪些是违规求助? 4621800
关于积分的说明 14580508
捐赠科研通 4561985
什么是DOI,文献DOI怎么找? 2499748
邀请新用户注册赠送积分活动 1479481
关于科研通互助平台的介绍 1450600