Deep learning model for measuring the sagittal Cobb angle on cervical spine computed tomography

矢状面 相关系数 数学 柯布角 组内相关 核医学 医学 统计 再现性 射线照相术 解剖 放射科
作者
Chunjie Wang,Ming Ni,Shuai Tian,Hanqiang Ouyang,Xiaoming Liu,Lianxi Fan,Pei Dong,Liang Jiang,Ning Lang,Huishu Yuan
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:23 (1) 被引量:5
标识
DOI:10.1186/s12880-023-01156-6
摘要

Abstract Purposes To develop a deep learning (DL) model to measure the sagittal Cobb angle of the cervical spine on computed tomography (CT). Materials and methods Two VB-Net-based DL models for cervical vertebra segmentation and key-point detection were developed. Four-points and line-fitting methods were used to calculate the sagittal Cobb angle automatically. The average value of the sagittal Cobb angle was manually measured by two doctors as the reference standard. The percentage of correct key points (PCK), matched samples t test, intraclass correlation coefficient (ICC), Pearson correlation coefficient, mean absolute error (MAE), and Bland‒Altman plots were used to evaluate the performance of the DL model and the robustness and generalization of the model on the external test set. Results A total of 991 patients were included in the internal data set, and 112 patients were included in the external data set. The PCK of the DL model ranged from 78 to 100% in the test set. The four-points method, line-fitting method, and reference standard measured sagittal Cobb angles were − 1.10 ± 18.29°, 0.30 ± 13.36°, and 0.50 ± 12.83° in the internal test set and 4.55 ± 20.01°, 3.66 ± 18.55°, and 1.83 ± 12.02° in the external test set, respectively. The sagittal Cobb angle calculated by the four-points method and the line-fitting method maintained high consistency with the reference standard (internal test set: ICC = 0.75 and 0.97; r = 0.64 and 0.94; MAE = 5.42° and 3.23°, respectively; external test set: ICC = 0.74 and 0.80, r = 0.66 and 0.974, MAE = 5.25° and 4.68°, respectively). Conclusions The DL model can accurately measure the sagittal Cobb angle of the cervical spine on CT. The line-fitting method shows a higher consistency with the doctors and a minor average absolute error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ruochenzu发布了新的文献求助10
1秒前
阿狸贱贱完成签到,获得积分10
3秒前
3秒前
蒙豆儿发布了新的文献求助10
3秒前
东东发布了新的文献求助10
3秒前
江姜完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
曹思佳发布了新的文献求助10
5秒前
seven发布了新的文献求助10
5秒前
纯真雁菱发布了新的文献求助10
6秒前
华仔应助遇鲸还潮采纳,获得10
6秒前
totoo2021完成签到,获得积分10
7秒前
8秒前
8秒前
hi小豆发布了新的文献求助10
9秒前
10秒前
bruce6tt完成签到,获得积分10
11秒前
11秒前
12秒前
受伤苗条完成签到,获得积分10
13秒前
梦比优斯完成签到,获得积分20
14秒前
HC发布了新的文献求助10
15秒前
大胖小子发布了新的文献求助10
16秒前
俊逸的续发布了新的文献求助10
17秒前
mm完成签到,获得积分10
18秒前
玛卡巴卡发布了新的文献求助10
19秒前
22秒前
24秒前
科研通AI5应助俊逸的续采纳,获得10
25秒前
杰334发布了新的文献求助10
25秒前
日月同辉完成签到,获得积分10
25秒前
852应助痴情的博超采纳,获得10
25秒前
量子星尘发布了新的文献求助20
26秒前
小二郎应助hi小豆采纳,获得10
26秒前
文房四宝完成签到,获得积分20
27秒前
lucky发布了新的文献求助10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
创造互补优势国外有人/无人协同解析 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4647379
求助须知:如何正确求助?哪些是违规求助? 4036822
关于积分的说明 12485668
捐赠科研通 3726136
什么是DOI,文献DOI怎么找? 2056592
邀请新用户注册赠送积分活动 1087550
科研通“疑难数据库(出版商)”最低求助积分说明 968984