GPONet: A two-stream gated progressive optimization network for salient object detection

计算机科学 人工智能 突出 GSM演进的增强数据速率 模式识别(心理学) 特征(语言学) 像素 骨干网 计算机视觉 过程(计算) 计算机网络 哲学 语言学 操作系统
作者
Yugen Yi,Ningyi Zhang,Wei Zhou,Yanjiao Shi,Gengsheng Xie,Jianzhong Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:150: 110330-110330 被引量:9
标识
DOI:10.1016/j.patcog.2024.110330
摘要

The salient object detection task is to locate and detect salient regions in images, which is widely applied in various fields. In this paper, we propose a gated progressive optimization network (GPONet) for salient object detection. Firstly, to extract salient regions more accurately, we design a multi-level feature fusion module with a gating mechanism named gate fusion network (GFN). GFN focuses on the semantic information of high-level features as well as the detailed information of low-level features, enabling purposeful delivery of high-level features to low-level features. The gate fusion unit (GFU) is also able to maintain valid information and suppress redundant information in the fusion process. Secondly, while some existing methods have shown that the additional edge supervision can facilitate salient object detection, edge pixels are often much less common than non-edge pixels, leading to the challenge of class imbalance. To overcome this issue, we introduce detail labels that provide additional internal details as a supplementary supervisory signal. Combining these labels with proposed Detail Perception Loss enables our network to learn edge information of salient objects more effectively. To complement each other and guide information exchange between the two branches, we propose a cross guide module (CGM) to control the information flow transfer between them. Finally, we develop a simple and efficient attention fusion strategy to merge the prediction maps of the two branches to generate the final salient prediction map. Extensive experimental results validate that our method reaches optimal or comparable performance on several mainstream datasets. The code of GPONet is available from https://github.com/antonie-z/GPONet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣雅柏完成签到 ,获得积分10
刚刚
刚刚
li发布了新的文献求助10
刚刚
刚刚
情怀应助136542采纳,获得10
刚刚
无奈书包发布了新的文献求助10
1秒前
李大白发布了新的文献求助10
1秒前
XXY发布了新的文献求助10
1秒前
ananchen发布了新的文献求助10
1秒前
拾一发布了新的文献求助10
2秒前
坚强不言完成签到,获得积分10
2秒前
jiaaniu完成签到 ,获得积分10
2秒前
2秒前
复杂的书白完成签到,获得积分10
2秒前
3秒前
XYZ完成签到 ,获得积分10
3秒前
专一的幻莲完成签到,获得积分10
4秒前
5秒前
勤恳的巧蕊完成签到,获得积分10
5秒前
爱吃冻梨完成签到,获得积分10
5秒前
平常破茧完成签到,获得积分10
5秒前
小马甲应助li采纳,获得10
6秒前
小颖发布了新的文献求助10
6秒前
weiyongswust发布了新的文献求助10
6秒前
堃kun发布了新的文献求助20
6秒前
Wayne_Sun发布了新的文献求助10
6秒前
CodeCraft应助鳗鱼念薇采纳,获得10
6秒前
外向梦安发布了新的文献求助10
7秒前
yilin完成签到 ,获得积分10
7秒前
xmjxmj217完成签到 ,获得积分10
7秒前
cc发布了新的文献求助10
7秒前
青炀发布了新的文献求助10
7秒前
捡针雨完成签到,获得积分20
8秒前
siyong完成签到,获得积分10
8秒前
包容灵萱完成签到,获得积分20
9秒前
端庄幻桃完成签到 ,获得积分10
9秒前
9秒前
1101592875发布了新的文献求助30
10秒前
10秒前
柴郡喵完成签到,获得积分10
10秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872404
求助须知:如何正确求助?哪些是违规求助? 3414752
关于积分的说明 10690504
捐赠科研通 3139014
什么是DOI,文献DOI怎么找? 1731862
邀请新用户注册赠送积分活动 835056
科研通“疑难数据库(出版商)”最低求助积分说明 781656