Quantifying strong point sources emissions of CO2 using spaceborne LiDAR: Method development and potential analysis

激光雷达 遥感 环境科学 反演(地质) 卫星 气象学 计算机科学 地质学 工程类 地理 航空航天工程 古生物学 构造盆地
作者
Tianqi Shi,Ge Han,Xin Ma,Zhipeng Pei,Wei‐Bo Chen,Jiqiao Liu,Xingying Zhang,Siwei Li,Wei Gong
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:292: 117346-117346 被引量:23
标识
DOI:10.1016/j.enconman.2023.117346
摘要

Accurate reporting of point source emissions of CO2 is fundamental to addressing climate change. Currently, bottom-up verification methods based on inventory statistics face significant challenges in this area. Satellite remote sensing has emerged as a promising approach for cost-effective global-scale verification of point source emissions, with spaceborne LiDAR offering high spatial resolution ideal for this purpose. However, the inversion of CO2 emissions from spaceborne LiDAR CO2 concentration observations requires urgent attention, as existing methods heavily rely on prior information in diffusion models and the accuracy of meteorological data. In this work, a novel emission inversion method based on genetic algorithms and trust-region techniques is proposed to estimate CO2 emissions from point sources using spaceborne LiDAR observations. A comparison between the CO2 emission rates calculated from actual airborne LiDAR data (as a prototype of spaceborne LiDAR) and emission inventories for the Suizhong power plant showed a deviation of less than 7.0%. Observing system simulation experiment (OSSE) demonstrated that using DQ-1 (spaceborne LiDAR) observation data as input, the relative error of emission rates would be less than 0.6% when the distance between the emission source and the observation footprint is less than 10 km. Furthermore, the developed model mitigates the impact of uncertainties in meteorological data and IPDA (Integrated-Path Differential Absorption) LiDAR measurements on the final emission quantification. The proposed approach is expected to enable DQ-1 to provide affordable and accurate carbon verification services for over 20.0% of the world's strong point source emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的悒发布了新的文献求助10
1秒前
小武wwwww完成签到 ,获得积分10
3秒前
6秒前
6秒前
qq78910完成签到,获得积分10
8秒前
2500完成签到,获得积分10
9秒前
文俊杰发布了新的文献求助10
12秒前
猪猪hero发布了新的文献求助10
14秒前
17秒前
Qiao应助嘿嘿嘿采纳,获得50
18秒前
18秒前
文俊杰完成签到,获得积分10
19秒前
猪猪hero发布了新的文献求助10
20秒前
伶俐如冰完成签到,获得积分10
21秒前
思归发布了新的文献求助10
22秒前
22秒前
今后应助ho hou h采纳,获得10
23秒前
猪猪hero发布了新的文献求助10
26秒前
Durant发布了新的文献求助10
27秒前
科研通AI2S应助闾丘山菡采纳,获得10
27秒前
yy完成签到,获得积分10
28秒前
XMUyxy完成签到,获得积分10
29秒前
29秒前
SONGYEZI完成签到,获得积分0
32秒前
科研小土豆完成签到,获得积分10
32秒前
32秒前
柯一一应助ASU采纳,获得10
33秒前
之ang张完成签到 ,获得积分10
33秒前
英俊的铭应助情红锐采纳,获得10
34秒前
猪猪hero发布了新的文献求助10
34秒前
maguodrgon关注了科研通微信公众号
34秒前
35秒前
快乐科研发布了新的文献求助10
35秒前
晓湫发布了新的文献求助10
36秒前
领导范儿应助橘子汽水采纳,获得10
37秒前
37秒前
orixero应助陈博文采纳,获得10
38秒前
ho hou h发布了新的文献求助10
38秒前
Ava应助快乐科研采纳,获得10
41秒前
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965327
求助须知:如何正确求助?哪些是违规求助? 3510663
关于积分的说明 11154407
捐赠科研通 3244991
什么是DOI,文献DOI怎么找? 1792739
邀请新用户注册赠送积分活动 874026
科研通“疑难数据库(出版商)”最低求助积分说明 804150