Detecting depression tendency with multimodal features

计算机科学 人工智能 萧条(经济学) 模式治疗法 心理学 心理治疗师 宏观经济学 经济
作者
Hui Zhang,Hong Wang,Shu Han,Wei Li,Luhe Zhuang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107702-107702 被引量:13
标识
DOI:10.1016/j.cmpb.2023.107702
摘要

Depression can severely impact physical and mental health and may even harm society. Therefore, detecting the early symptoms of depression and treating them on time is critical. The widespread use of social media has led individuals with depressive tendencies to express their emotions on social platforms, share their painful experiences, and seek support and help. Therefore, the massive available amounts of social platform data provide the possibility of identifying depressive tendencies.This paper proposes a neural network hybrid model MTDD to achieve this goal. Analysis of the content of users' posts on social platforms has facilitated constructing a post-level method to detect depressive tendencies in individuals. Compared with existing methods, the MTDD model uses the following innovative methods: First, this model is based on social platform data, which is objective and accurate, can be obtained at a low cost, and is easy to operate. The model can avoid the influence of subjective factors in the depressive tendency detection method based on consultation with mental health experts. In other words, it can avoid the problem of undisclosed and imperfect data in depressive tendency detection. Second, the MTDD model is based on a deep neural network hybrid model, combining the advantages of CNN and BiLSTM networks and avoiding the problem of poor generalization ability in a single model for depression tendency recognition. Third, the MTDD model is based on multimodal features for learning the vector representation of depression-prone text, including text features, semantic features, and domain knowledge, making the model more robust.Extensive experimental results demonstrate that our MTDD model detects users who may have a depressive tendency with a 95% F1 value and obtained SOTA results.Our MTDD model can detect depressive users on social media platforms more effectively, providing the possibility for early diagnosis and timely treatment of depression. The experiment proves that our MTDD model outperforms many of the latest depressive tendency detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周凡淇发布了新的文献求助10
2秒前
MrTStar完成签到 ,获得积分10
2秒前
dynamoo发布了新的文献求助10
3秒前
陈梓完成签到,获得积分10
5秒前
junzilan完成签到,获得积分10
6秒前
冷傲板栗完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
鱿鱼炒黄瓜完成签到,获得积分10
11秒前
科研通AI5应助是希希啊a采纳,获得10
12秒前
xiaoyaoyou351完成签到,获得积分10
12秒前
13秒前
多多发布了新的文献求助10
13秒前
咕咕发布了新的文献求助30
15秒前
kxy0311发布了新的文献求助10
15秒前
兔子应助ywq采纳,获得10
18秒前
18秒前
JamesPei应助Kaleido采纳,获得10
19秒前
领导范儿应助dynamoo采纳,获得30
20秒前
JamesPei应助累加法采纳,获得10
21秒前
JamesPei应助T拐拐采纳,获得10
22秒前
Li完成签到,获得积分10
23秒前
可爱的函函应助lin采纳,获得10
23秒前
认真柠檬完成签到,获得积分10
24秒前
Liangyu发布了新的文献求助10
24秒前
赵迪完成签到,获得积分10
24秒前
25秒前
cissie完成签到 ,获得积分10
25秒前
max发布了新的文献求助10
25秒前
29秒前
Cecelia_Kim完成签到 ,获得积分10
29秒前
Lucas应助wsqg123采纳,获得10
30秒前
30秒前
咕咕完成签到,获得积分10
30秒前
30秒前
星辰大海应助秋临采纳,获得30
31秒前
35秒前
T拐拐发布了新的文献求助10
35秒前
现代完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746193
求助须知:如何正确求助?哪些是违规求助? 4094047
关于积分的说明 12665947
捐赠科研通 3805838
什么是DOI,文献DOI怎么找? 2101173
邀请新用户注册赠送积分活动 1126518
关于科研通互助平台的介绍 1003002