ICEEMDAN–VMD denoising method for enhanced magnetic memory detection signal of micro-defects

降噪 材料科学 信号(编程语言) 计算机科学 人工智能 程序设计语言
作者
Shiming Ji,Jie Yan,Zhenyu Liu,Guojun He
出处
期刊:Frontiers in signal processing [Frontiers Media SA]
卷期号:5
标识
DOI:10.3389/frsip.2025.1518558
摘要

Ferromagnetic materials are extensively utilized in industrial settings where the early detection and repair of defects is paramount for ensuring industrial safety. During the enhanced magnetic memory detection of micro-defects, many interference signals appear in the detection signal, which makes it difficult to accurately extract the characteristics of the micro-defect signals, significantly affecting detection effectiveness. When improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is employed independently for signal denoising, the noise and feature signals of the transition components are retained or removed. When variational mode decomposition (VMD) is employed independently for signal denoising, the denoising effect is restricted because of the difficulty in determining the penalty factor α and the number of decomposition layers m . To solve these problems, a denoising method for enhanced magnetic memory detection signals based on ICEEMDAN and VMD, called ICEEMDAN–VMD, is proposed in this paper. First, a comprehensive index (CI) combining information entropy (IE) and the correlation coefficient R is proposed, then the signal components obtained by performing decomposition with the ICEEMDAN method are divided into noise-dominant components, transition components, and useful signal components based on the CI. Subsequently, VMD is employed to perform secondary decomposition on the transition components obtained from the ICEEMDAN method and calculate the correlation coefficients. Ultimately, the optimal VMD components and useful signal components obtained by the ICEEMDAN method are selected for signal reconstruction to obtain a denoised signal. To validate the effectiveness of the proposed method, the denoising effects of the ICEEMDAN–VMD, ICEEMDAN, and VMD methods were compared based on the signal-to-noise ratio (SNR) and fuzzy entropy (FE). The comparison indicated that the ICEEMDAN–VMD denoising method significantly enhanced the denoising effect, and the SNRs of the components of the magnetic field signal could be increased by up to 69.426%. The SNR of each gradient component of the magnetic field signal could be improved by up to ten times, and the FEs of the signal components and their corresponding gradient components could be reduced by 24.198%–81.011%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
沐橘发布了新的文献求助20
2秒前
天天快乐应助WT采纳,获得10
5秒前
我是老大应助橙花采纳,获得10
5秒前
雨琴发布了新的文献求助10
5秒前
Dean发布了新的文献求助10
5秒前
董羽佳完成签到,获得积分10
6秒前
6秒前
Sschi发布了新的文献求助10
7秒前
科研通AI5应助ComeOn采纳,获得10
7秒前
科研通AI5应助邓邓邓采纳,获得10
10秒前
玖Nine发布了新的文献求助10
10秒前
清爽难胜完成签到,获得积分10
10秒前
完美世界应助平常心采纳,获得30
11秒前
TIWOSS完成签到,获得积分10
12秒前
李爱国应助雪山飞虹采纳,获得10
14秒前
leslie完成签到,获得积分10
14秒前
舒适香露完成签到,获得积分10
14秒前
白杨木影子被拉长完成签到,获得积分10
14秒前
17秒前
河工大nature发表者完成签到 ,获得积分10
17秒前
17秒前
bc举报dd求助涉嫌违规
18秒前
jianjianjiang完成签到,获得积分10
19秒前
雨琴发布了新的文献求助10
21秒前
21秒前
Kyle发布了新的文献求助10
22秒前
muyassar完成签到,获得积分10
22秒前
脆条完成签到,获得积分10
23秒前
Casper完成签到,获得积分10
24秒前
24秒前
24秒前
jianjianjiang发布了新的文献求助10
24秒前
25秒前
25秒前
小羊123发布了新的文献求助10
26秒前
jeremy完成签到,获得积分10
27秒前
28秒前
Kyle完成签到,获得积分10
28秒前
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814939
求助须知:如何正确求助?哪些是违规求助? 3358987
关于积分的说明 10399369
捐赠科研通 3076561
什么是DOI,文献DOI怎么找? 1689868
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608