Using Near-Infrared Hyperspectral Imaging Combined with Machine Learning to Predict the Components and the Origin of Radix Paeoniae Rubra

高光谱成像 根(腹足类) 模式识别(心理学) 人工智能 色谱法 计算机科学 化学 生物 植物
作者
Xinlong Liu,Zhouyou Wu,Qian Zhao,Yang Yu,Zhen Li
出处
期刊:Analytical Methods [Royal Society of Chemistry]
被引量:1
标识
DOI:10.1039/d4ay01977f
摘要

The efficacy and safety of drugs are closely related to the geographical origin and quality of the raw materials. This study focuses on using near-infrared hyperspectral imaging (NIR-HSI) combined with machine learning algorithms to construct content prediction models and origin identification models to predict the components and origin of Radix Paeoniae Rubra (RPR). These models are quick, non-destructive, and accurate for assessing both component content and origin. Spectral data were preprocessed using multiple scattering correction (MSC), Savitzky-Golay smoothing (S-G), and standard normal variate (SNV). Content prediction models for paeoniflorin were developed using principal component regression (PCR), partial least squares regression (PLSR), and ridge regression (RR). Classification models for origin identification utilized support vector machine (SVM), K-nearest neighbor (KNN), and random forest (RF). The SNV-RR model achieved a determination coefficient of 0.8943, while the SNV-SVM model achieved an accuracy of 0.9790. Meanwhile, two feature selection methods were used to further simplify the prediction model while ensuring accuracy, in order to improve the detection efficiency in practical applications. This research demonstrates the feasibility of combining NIR-HSI with machine learning for quality analysis of RPR, providing a theoretical basis for promoting hyperspectral imaging technology in the food and pharmaceutical sectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助端庄凌文采纳,获得10
1秒前
merryorange完成签到,获得积分10
1秒前
小马甲应助lin采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
3秒前
H华ua应助科研通管家采纳,获得10
3秒前
H华ua应助科研通管家采纳,获得30
3秒前
3秒前
Akim应助吴宇杰采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
科研通AI6应助瀼瀼采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
东莱牧鲲完成签到,获得积分10
4秒前
斯文败类应助无语的又夏采纳,获得10
4秒前
5秒前
6秒前
领导范儿应助YXH采纳,获得10
7秒前
JamesPei应助种花家的狗狗采纳,获得10
9秒前
今后应助累加法采纳,获得10
10秒前
小马甲应助周城采纳,获得30
15秒前
gaodayu完成签到 ,获得积分10
15秒前
16秒前
wang完成签到,获得积分10
16秒前
16秒前
17秒前
潇洒公子完成签到 ,获得积分10
17秒前
完美世界应助sunnyfish007采纳,获得20
18秒前
20秒前
在水一方应助kellyzzm采纳,获得30
21秒前
婷婷发布了新的文献求助10
21秒前
YXH发布了新的文献求助10
22秒前
22秒前
lp发布了新的文献求助80
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746159
求助须知:如何正确求助?哪些是违规求助? 4094000
关于积分的说明 12665831
捐赠科研通 3805783
什么是DOI,文献DOI怎么找? 2101102
邀请新用户注册赠送积分活动 1126432
关于科研通互助平台的介绍 1002953