Predicting in-hospital mortality in patients with heart failure combined with atrial fibrillation using stacking ensemble model: an analysis of the medical information mart for intensive care IV (MIMIC-IV)

心房颤动 医学 健康信息学 心力衰竭 重症监护 医疗急救 重症监护医学 内科学 急诊医学 心脏病学 公共卫生 护理部
作者
Panpan Chen,Jun-hua Sun,Yingjie Chu,Yujie Zhao
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02829-0
摘要

Heart failure (HF) and atrial fibrillation (AF) usually coexist and are associated with a poorer prognosis. This study aimed to develop a model to predict in-hospital mortality in patients with HF combined with AF. Patients with HF and AF were obtained from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database from 2008 to 2019. Feature selection was based on the Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) regression model. Random Forest, eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), K-Nearest Neighbor (KNN) models, and their stacked model (the stacking ensemble model) were established. The area under of the curve (AUC) with 95% confidence interval (CI), sensitivity, specificity, as well as accuracy were applied to assess the performance of the predictive models. A total of 5,998 patients with HF combined with AF were included, of which 4,198 patients were assigned to the training set and 1,800 to the testing set (7:3). Among these 4,198 patients, 624 (14.86%) died in-hospital and 3,574 (85.14%) survived. Twenty-two features were used to construct the predictive model. Among these four single models, the AUC was 0.747 (95%CI: 0.717–0.777) for the Random Forest model, 0.755 (95%CI: 0.725–0.785) for the XGBoost model, 0.754 (95%CI: 0.724–0.784) for the LGBM model, and 0.746 (95%CI: 0.716–0.776) for the KNN model in the testing set. The stacking ensemble model had the highest AUC compared to the four single models, with AUCs of 0.837 (95%CI: 0.821–0.852) and 0.768 (95%CI: 0.740–0.796) for the training set and testing set, respectively. The stacking ensemble model showed a good predictive effect in predicting in-hospital mortality in patients with HF combined with AF and may provide clinicians with a reference tool for early identification of mortality risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Prinpaul完成签到,获得积分10
1秒前
burno1112完成签到,获得积分10
1秒前
懵懂小尉完成签到,获得积分10
2秒前
852应助叶伏天采纳,获得10
2秒前
HC完成签到,获得积分10
3秒前
Prinpaul发布了新的文献求助10
4秒前
4秒前
4秒前
刘稀完成签到,获得积分10
5秒前
郅郅郅完成签到 ,获得积分10
5秒前
张家木完成签到,获得积分10
6秒前
皮皮虾完成签到,获得积分10
6秒前
6秒前
lshao完成签到 ,获得积分10
6秒前
Akim应助介于两石之间采纳,获得30
6秒前
苏苏完成签到,获得积分10
6秒前
自然怀梦完成签到,获得积分10
7秒前
小董不懂完成签到,获得积分10
7秒前
7秒前
红汤加煎蛋完成签到,获得积分10
7秒前
狐狸完成签到,获得积分10
7秒前
默默半凡完成签到,获得积分20
7秒前
zzzz完成签到,获得积分10
7秒前
supertkeb完成签到,获得积分10
8秒前
不辞完成签到,获得积分10
8秒前
阿湫完成签到,获得积分10
8秒前
科研通AI5应助liu采纳,获得10
8秒前
flysky120发布了新的文献求助10
9秒前
9秒前
Jhinnnn完成签到,获得积分10
10秒前
有丶神发布了新的文献求助10
10秒前
默默半凡发布了新的文献求助10
10秒前
司徒不二完成签到,获得积分0
10秒前
科研通AI5应助认真夜云采纳,获得10
11秒前
智慧吗喽完成签到,获得积分10
11秒前
飞云完成签到,获得积分10
12秒前
温婉的松鼠完成签到,获得积分10
12秒前
华理附院孙文博完成签到 ,获得积分10
12秒前
充电宝应助草莓熊采纳,获得10
12秒前
David完成签到,获得积分10
13秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830668
求助须知:如何正确求助?哪些是违规求助? 3372971
关于积分的说明 10476375
捐赠科研通 3092950
什么是DOI,文献DOI怎么找? 1702308
邀请新用户注册赠送积分活动 818920
科研通“疑难数据库(出版商)”最低求助积分说明 771153