亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Energy Efficiency Maximization in RISs-Assisted UAVs-Based Edge Computing Network Using Deep Reinforcement Learning

强化学习 最大化 GSM演进的增强数据速率 计算机科学 高效能源利用 钢筋 人工智能 能量(信号处理) 数学优化 工程类 结构工程 数学 电气工程 统计
作者
Chuanwen Luo,Jian Zhang,Jianxiong Guo,Yi Hong,Zhibo Chen,Shuyang Gu
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:7 (4): 1065-1083 被引量:8
标识
DOI:10.26599/bdma.2024.9020022
摘要

Edge Computing (EC) pushes computational capability to the Terrestrial Devices (TDs), providing more efficient and faster computing solutions. Unmanned Aerial Vehicles (UAVs) equipped with EC servers can be flexibly deployed, even in complex terrains, to provide mobile computing services at all times. Meanwhile, UAVs can establish an air-to-ground line-of-sight link with TDs to improve the quality of communication link. However, the UAV-to-TD link may be obstructed by ground obstacles such as buildings or trees, leading to sub-optimal data transmission rates. To surmount this issue, Reconfigurable Intelligent Surfaces (RISs) emerge as a promising technology capable of intelligently reflecting signals to enhance communication quality between UAVs and TDs. In this paper, we consider the RISs-assisted multi-UAVs collaborative edge Computing Network (RUCN) in urban environment, in which we study the computational offloading problem. Our goal is to maximize the overall energy efficiency of UAVs by jointly optimizing the flight duration and trajectories of UAVs, and the phase shifts of RISs. It is worth noting that this problem has been formally established as NP-hard. Therefore, we propose the Deep Deterministic Policy Gradients based UAV Trajectory and RIS Phase shift optimization algorithm (UTRP-DDPG) to solve this complex optimization challenge. The results of extensive numerical experiments show that the proposed algorithm outperforms the other benchmark algorithms under various parameter settings. Specially, the UTRP-DDPG algorithm improves the UAV energy efficiency by at least 2% compared to DQN algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsl应助科研通管家采纳,获得10
7秒前
lsl应助科研通管家采纳,获得10
7秒前
lsl应助科研通管家采纳,获得10
7秒前
lsl应助科研通管家采纳,获得10
7秒前
陈小子完成签到 ,获得积分10
7秒前
嘻嘻哈哈完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
Jasper应助杨sq采纳,获得10
1分钟前
水水水发布了新的文献求助10
1分钟前
1分钟前
杨sq发布了新的文献求助10
1分钟前
科研通AI6应助Trivers采纳,获得10
1分钟前
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得30
2分钟前
科研通AI6应助shier采纳,获得10
2分钟前
景清完成签到 ,获得积分10
2分钟前
顾矜应助kekao采纳,获得10
3分钟前
wanci应助Xhnz采纳,获得10
3分钟前
3分钟前
Xhnz发布了新的文献求助10
3分钟前
3分钟前
隐形曼青应助Xhnz采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
情怀应助动听海露采纳,获得10
5分钟前
5分钟前
5分钟前
动听海露发布了新的文献求助10
5分钟前
昏睡的梦安完成签到 ,获得积分10
5分钟前
5分钟前
宁不正发布了新的文献求助10
6分钟前
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644707
求助须知:如何正确求助?哪些是违规求助? 4765184
关于积分的说明 15025524
捐赠科研通 4803066
什么是DOI,文献DOI怎么找? 2567894
邀请新用户注册赠送积分活动 1525458
关于科研通互助平台的介绍 1484992