A Survey on ML Techniques for Multi-Platform Malware Detection: Securing PC, Mobile Devices, IoT, and Cloud Environments

恶意软件 云计算 笔记本电脑 计算机科学 移动设备 计算机安全 移动恶意软件 物联网 数据科学 万维网 操作系统
作者
Jannatul Ferdous,Rafiqul Islam,Arash Mahboubi,Md Zahidul Islam
出处
期刊:Sensors [MDPI AG]
卷期号:25 (4): 1153-1153 被引量:6
标识
DOI:10.3390/s25041153
摘要

Malware has emerged as a significant threat to end-users, businesses, and governments, resulting in financial losses of billions of dollars. Cybercriminals have found malware to be a lucrative business because of its evolving capabilities and ability to target diverse platforms such as PCs, mobile devices, IoT, and cloud platforms. While previous studies have explored single platform-based malware detection, no existing research has comprehensively reviewed malware detection across diverse platforms using machine learning (ML) techniques. With the rise of malware on PC or laptop devices, mobile devices and IoT systems are now being targeted, posing a significant threat to cloud environments. Therefore, a platform-based understanding of malware detection and defense mechanisms is essential for countering this evolving threat. To fill this gap and motivate further research, we present an extensive review of malware detection using ML techniques with respect to PCs, mobile devices, IoT, and cloud platforms. This paper begins with an overview of malware, including its definition, prominent types, analysis, and features. It presents a comprehensive review of machine learning-based malware detection from the recent literature, including journal articles, conference proceedings, and online resources published since 2017. This study also offers insights into the current challenges and outlines future directions for developing adaptable cross-platform malware detection techniques. This study is crucial for understanding the evolving threat landscape and for developing robust detection strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助小胡同学采纳,获得10
刚刚
顺心夜南应助傲娇依琴采纳,获得50
刚刚
刚刚
wn完成签到 ,获得积分10
1秒前
加油发布了新的文献求助10
1秒前
烟花应助Kem采纳,获得10
1秒前
YJH发布了新的文献求助10
2秒前
2秒前
2秒前
Yy杨优秀完成签到 ,获得积分10
2秒前
2秒前
谦让易烟发布了新的文献求助10
3秒前
Zzzzzzz完成签到,获得积分10
3秒前
3秒前
4秒前
阿啵呲嘚完成签到,获得积分10
4秒前
4秒前
4秒前
搜集达人应助wlj采纳,获得10
4秒前
科研通AI6应助妙妙采纳,获得10
4秒前
lfc完成签到 ,获得积分10
5秒前
小巧的聪展完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
山海关外发布了新的文献求助10
5秒前
李健的小迷弟应助虞无声采纳,获得10
6秒前
6秒前
上官若男应助陈美宏采纳,获得10
6秒前
忧虑的寄真完成签到,获得积分10
6秒前
梦想成神发布了新的文献求助10
6秒前
hao69完成签到 ,获得积分10
6秒前
威武荔枝完成签到,获得积分10
7秒前
Hello应助地瓜采纳,获得10
7秒前
7秒前
肖肖完成签到,获得积分10
7秒前
年轻元容发布了新的文献求助10
7秒前
7秒前
翎儿响叮当完成签到,获得积分10
8秒前
阳光向秋发布了新的文献求助30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598145
求助须知:如何正确求助?哪些是违规求助? 4683795
关于积分的说明 14831071
捐赠科研通 4662682
什么是DOI,文献DOI怎么找? 2537076
邀请新用户注册赠送积分活动 1504684
关于科研通互助平台的介绍 1470364