Ensemble learning approach for accurate virtual borehole prediction in 3D geological modeling

钻孔 计算机科学 集成学习 人工智能 数据挖掘 机器学习 地质学 岩土工程
作者
Bingning Guo
出处
期刊:International Journal of Digital Earth [Taylor & Francis]
卷期号:17 (1): 1-27 被引量:1
标识
DOI:10.1080/17538947.2024.2409964
摘要

The use of virtual drilling technology can effectively accelerate the establishment process of 3D geological models and improve grid structure and visual performance. However, most existing virtual drilling prediction techniques mainly rely on traditional interpolation methods, which not only increase computational overhead but also lack sufficient automation. To address this problem, this study introduces an innovative virtual borehole prediction technology combined with a machine learning stacking strategy. This technology integrates Random Forest (RF), XGBoost, CatBoost, and LightGBM algorithms as basic models and improves prediction accuracy through stacked generalization technology. This study adopted a method of adding zero-thickness layers to unify stratigraphic sequences. The 3D position information of boreholes is used as model input, and the bottom height of boreholes at stratigraphic boundaries is used as the prediction target. Through a hierarchical training method using 85[Formula: see text] of borehole data for training and 15[Formula: see text] for verification, a regression prediction model for stratigraphic boundaries is established. The model is able to predict detailed stratigraphic sequences containing information on stratigraphic type and thickness to accurately simulate virtual boreholes. Research results show that the integrated model has excellent prediction performance, achieves efficient automated prediction, and provides a new solution for virtual drilling prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助苹果听枫采纳,获得10
1秒前
浮游应助guihai采纳,获得10
1秒前
2秒前
Akim应助允许一切发生采纳,获得10
2秒前
3秒前
undo完成签到,获得积分10
3秒前
喜悦发布了新的文献求助10
3秒前
4秒前
缥缈发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
ccm应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
11哥应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
Jeff_Lin应助科研通管家采纳,获得10
5秒前
5秒前
无花果应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Chochee完成签到,获得积分10
5秒前
lalala123发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
hitdsh应助科研通管家采纳,获得20
5秒前
11哥应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
COOLIN发布了新的文献求助10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
大个应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
nin完成签到,获得积分10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264034
求助须知:如何正确求助?哪些是违规求助? 4424379
关于积分的说明 13772854
捐赠科研通 4299447
什么是DOI,文献DOI怎么找? 2359095
邀请新用户注册赠送积分活动 1355361
关于科研通互助平台的介绍 1316624