MLP-DINO: Category Modeling and Query Graphing with Deep MLP for Object Detection

计算机科学 对象(语法) 人工智能 目标检测 计算机图形学(图像) 情报检索 模式识别(心理学)
作者
Guiping Cao,Wenjian Huang,Xiangyuan Lan,Jianguo Zhang,Dongmei Jiang,Yaowei Wang
标识
DOI:10.24963/ijcai.2024/67
摘要

Popular transformer-based detectors detect objects in a one-to-one manner, where both the bounding box and category of each object are predicted only by the single query, leading to the box-sensitive category predictions. Additionally, the initialization of positional queries solely based on the predicted confidence scores or learnable embeddings neglects the significant spatial interrelation between different queries. This oversight leads to an imbalanced spatial distribution of queries (SDQ). In this paper, we propose a new MLP-DINO model to address these issues. Firstly, we present a new Query-Independent Category Supervision (QICS) approach for modeling categories information, decoupling the sensitive bounding box prediction process to improve the detection performance. Additionally, to further improve the category predictions, we introduce a deep MLP model into transformer-based detection framework to capture the long-range and short-range information simultaneously. Thirdly, to balance the SDQ, we design a novel Graph-based Query Selection (GQS) method that distributes each query point in a discrete manner by graphing the spatial information of queries to cover a broader range of potential objects, significantly enhancing the hit-rate of queries. Experimental results on COCO indicate that our MLP-DINO achieves 54.6% AP with only 44M parame ters under 36-epoch setting, greatly outperforming the original DINO by +3.7% AP with fewer parameters and FLOPs. The source codes will be available at https://github.com/Med-Process/MLP-DINO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助爱听歌从蓉采纳,获得10
刚刚
Orange应助ZHONGJIAHAO采纳,获得10
1秒前
可靠的茉莉完成签到,获得积分10
1秒前
1秒前
占那个完成签到 ,获得积分10
2秒前
3秒前
3秒前
寒冷冬卉发布了新的文献求助10
4秒前
4秒前
OO完成签到,获得积分10
4秒前
5秒前
5秒前
橘子发布了新的文献求助10
7秒前
偷浮生清闲完成签到,获得积分10
8秒前
WWW完成签到,获得积分10
8秒前
皮戾发布了新的文献求助10
10秒前
御坂10576号完成签到,获得积分10
12秒前
13秒前
Stroeve完成签到,获得积分10
13秒前
来都来了完成签到 ,获得积分10
15秒前
16秒前
17秒前
18秒前
18秒前
科研海发布了新的文献求助10
19秒前
马少洋完成签到,获得积分10
20秒前
20秒前
Owen应助橘子采纳,获得10
20秒前
20秒前
所所应助寒冷冬卉采纳,获得10
21秒前
希望天下0贩的0应助皮戾采纳,获得10
22秒前
22秒前
研友_nVWP2Z完成签到 ,获得积分10
23秒前
HL发布了新的文献求助10
23秒前
蜗牛发布了新的文献求助10
24秒前
泛泛之交发布了新的文献求助10
25秒前
晨阳发布了新的文献求助10
25秒前
麻薯头头发布了新的文献求助10
25秒前
28秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296018
求助须知:如何正确求助?哪些是违规求助? 4445360
关于积分的说明 13836028
捐赠科研通 4330050
什么是DOI,文献DOI怎么找? 2376864
邀请新用户注册赠送积分活动 1372213
关于科研通互助平台的介绍 1337586