Machine learning assisted prediction and optimization of mechanical properties for laser powder bed fusion of Ti6Al4V alloy

材料科学 延展性(地球科学) 微观结构 钛合金 激光功率缩放 聚类分析 合金 激光器 机器学习 计算机科学 复合材料 光学 物理 蠕动
作者
Yuheng Cao,Chaoyue Chen,Songzhe Xu,Ruixin Zhao,Kai Guo,Tao Hu,Hanlin Liao,Jiang Wang,Zhongming Ren
出处
期刊:Additive manufacturing [Elsevier BV]
卷期号:91: 104341-104341 被引量:23
标识
DOI:10.1016/j.addma.2024.104341
摘要

Due to the complex physical metallurgy phenomena and enormous parameter combination, the traditional trial-and-error method makes the microstructure tailoring of laser additive manufactured (LAM) for exceptional performance still a major challenge. Here, we presented a machine learning-based model to facilitate the parameter optimization and microstructure tailoring of laser powder bed fused (L-PBF) Ti6Al4V alloy with enhanced strength-ductility synergy. Initially, a database was constructed based on the 173 data sets from 31 related literature, with an in-depth analysis of key parameters such as laser power, laser speed, and powder size using the Pearson correlation coefficient (PCC). K-Means clustering was integrated into the Clustering Integrated Regression Model (CIRM), enhancing the cohesion of similar data groups based on process parameters. This strategic clustering significantly increases the precision of tailored predictive models for each group, markedly improving overall prediction accuracy. Additionally, combined with non-dominated sorting Genetic Algorithm II (NSGA-II), the CIRM model ensures rapid optimization and achieves the balance between strength and ductility during multi-objective optimization. L-PBF experiments, based on optimized parameters provided by the NSGA-II model, demonstrated an excellent combination of strength and ductility, compared to existing literature. Moreover, the Shapley additive explanation (SHAP) was introduced to interpret the prediction model, which indicates that adjusting the grain size distribution of martensite through laser-related parameters is critical for simultaneously enhancing strength and ductility. Essentially, our work provides a robust approach for the accurate prediction and multi-objective optimization of mechanical properties in LAM metallic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫萍发布了新的文献求助10
刚刚
GRG完成签到 ,获得积分10
2秒前
4秒前
岁月轮回发布了新的文献求助10
8秒前
jyj完成签到 ,获得积分10
14秒前
淞淞于我完成签到 ,获得积分10
14秒前
海人发布了新的文献求助10
14秒前
叶子完成签到 ,获得积分10
16秒前
可耐的三德完成签到 ,获得积分10
16秒前
17秒前
科目三应助感动的念双采纳,获得10
18秒前
思源应助皮毛柔软的猫采纳,获得30
21秒前
烟尘发布了新的文献求助10
21秒前
21秒前
YangSY完成签到,获得积分10
25秒前
26秒前
yyy发布了新的文献求助10
27秒前
YZJing完成签到,获得积分10
27秒前
科研通AI5应助七七采纳,获得10
28秒前
30秒前
学习的小崽完成签到,获得积分10
30秒前
32秒前
称心的芙完成签到,获得积分10
32秒前
南宫萍完成签到,获得积分10
33秒前
33秒前
夏惋清完成签到 ,获得积分0
33秒前
34秒前
平常的可乐完成签到 ,获得积分10
35秒前
科研闲人完成签到,获得积分10
36秒前
wjy完成签到 ,获得积分10
37秒前
安屿发布了新的文献求助10
37秒前
称心的芙发布了新的文献求助10
40秒前
qiao应助科研通管家采纳,获得10
41秒前
传奇3应助科研通管家采纳,获得30
41秒前
41秒前
岁月轮回发布了新的文献求助10
43秒前
43秒前
SPULY发布了新的文献求助10
43秒前
AE发布了新的文献求助20
44秒前
s1ght发布了新的文献求助30
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779606
求助须知:如何正确求助?哪些是违规求助? 3325116
关于积分的说明 10221269
捐赠科研通 3040209
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535