Naturalized species drive functional trait shifts in plant communities

生态学 丰度(生态学) 生态系统 生物 特质 植物群落 草本植物 草原 社区 入侵物种 生物多样性 引进物种 新型生态系统 相对物种丰度 物种丰富度 计算机科学 程序设计语言
作者
Magda Garbowski,Daniel C. Laughlin,Dana M. Blumenthal,Helen R. Sofaer,David T. Barnett,Evelyn M. Beaury,D. M. Buonaiuto,Jeffrey D. Corbin,Jeffrey S. Dukes,Regan Early,Andrea N. Nebhut,Laís Petri,Montserrat Vilà,Ian S. Pearse
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (40) 被引量:1
标识
DOI:10.1073/pnas.2403120121
摘要

Despite decades of research documenting the consequences of naturalized and invasive plant species on ecosystem functions, our understanding of the functional underpinnings of these changes remains rudimentary. This is partially due to ineffective scaling of trait differences between native and naturalized species to whole plant communities. Working with data from over 75,000 plots and over 5,500 species from across the United States, we show that changes in the functional composition of communities associated with increasing abundance of naturalized species mirror the differences in traits between native and naturalized plants. We find that communities with greater abundance of naturalized species are more resource acquisitive aboveground and belowground, shorter, more shallowly rooted, and increasingly aligned with an independent strategy for belowground resource acquisition via thin fine roots with high specific root length. We observe shifts toward herbaceous-dominated communities but shifts within both woody and herbaceous functional groups follow community-level patterns for most traits. Patterns are remarkably similar across desert, grassland, and forest ecosystems. Our results demonstrate that the establishment and spread of naturalized species, likely in combination with underlying environmental shifts, leads to predictable and consistent changes in community-level traits that can alter ecosystem functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭少敏发布了新的文献求助10
1秒前
勤恳的磬完成签到,获得积分10
1秒前
抽象电台头完成签到,获得积分10
1秒前
starry001发布了新的文献求助10
2秒前
夏爽2023完成签到,获得积分10
2秒前
2秒前
3秒前
共享精神应助伊梦采纳,获得10
3秒前
珍珠奶茶发布了新的文献求助10
3秒前
4秒前
4秒前
香蕉觅云应助Lydia采纳,获得10
5秒前
汤绮菱完成签到,获得积分0
5秒前
小颖完成签到,获得积分10
6秒前
6秒前
领导范儿应助Yolo采纳,获得10
6秒前
7秒前
8秒前
闲来逛逛007完成签到 ,获得积分10
8秒前
隐形曼青应助无人喝彩采纳,获得10
8秒前
深情安青应助starry001采纳,获得10
9秒前
领导范儿应助FJ采纳,获得10
9秒前
9秒前
鸽鸽哒发布了新的文献求助10
9秒前
夕荀发布了新的文献求助10
10秒前
zq完成签到,获得积分20
10秒前
莫等闲191发布了新的文献求助10
10秒前
deng完成签到,获得积分20
10秒前
传奇3应助大卜采纳,获得10
10秒前
11秒前
11秒前
下午好完成签到 ,获得积分10
11秒前
12321234完成签到,获得积分10
11秒前
11秒前
砍柴少年发布了新的文献求助10
12秒前
Torankus发布了新的文献求助10
12秒前
13秒前
天天快乐应助豆豆采纳,获得10
13秒前
大力蚂蚁发布了新的文献求助10
13秒前
Jasper应助HJJHJH采纳,获得10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New digital musical instruments : control and interaction beyond the keyboard 200
English language teaching materials : theory and practice 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835562
求助须知:如何正确求助?哪些是违规求助? 3377932
关于积分的说明 10501197
捐赠科研通 3097494
什么是DOI,文献DOI怎么找? 1705854
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772221