Regulation of wheat yield by soil multifunctionality and metagenomic-based microbial degradation potentials under crop rotations

基因组 产量(工程) 降级(电信) 环境科学 作物轮作 农学 作物 作物产量 作物残渣 微生物降解 生物技术 土壤科学 微生物 生物 农业 生态学 细菌 工程类 材料科学 基因 电信 冶金 生物化学 遗传学
作者
Yang Liu,Mengmeng Wen,Rong Hu,Fazhu Zhao,Jun Wang
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:370: 122897-122897 被引量:3
标识
DOI:10.1016/j.jenvman.2024.122897
摘要

Crop rotation benefits soil fertility and crop yield by providing organic components including cellulose, lignin, chitin, and glucans that are mainly degraded by soil microbial carbohydrate-active enzymes (CAZymes). However, the impacts of crop rotation on soil microbial CAZyme genes are not well understood. Hence, CAZyme genes and families involved in the degradation of differentially originated organic components were investigated using metagenomics among distinct crop rotations. Crop rotation had a more significant effect on soil nitrogen than on carbon fractions with higher content in the complex rotation referring to alfalfa (Medicago sativa L.; 4 year)-potato (Solanum tuberosum L.; 1 year)-winter wheat (3 year; A4PoW3). The composition of soil microbial CAZyme genes related to the degradation of fungi-derived components was more affected by crop rotation compared with the degradation of plant- and bacteria-derived components. The total abundance of CAZyme genes and families was significantly higher in the complex rotation. Notably, CAZyme genes belonging to glycoside hydrolase and glycosyl transferase families had more connections in their network. Moreover, key genes including CE4, GH20, and GH23 assembled toward the middle of the network, and were significantly regulated by dominant soil nitrogen fractions including soil potential nitrogen mineralization and microbial biomass nitrogen. Soil multifunctionality was mostly explained by the composition and total abundance of CAZyme genes, but wheat grain yield was profoundly regulated by fungi-derived components degradation genes under effects of dominant nitrogen fractions. Overall, the findings provide deep insight into the degradation potentials of soil microbial CAZyme genes for developing sustainable crop rotational agroecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牙牙发布了新的文献求助10
刚刚
鲤鱼诗桃发布了新的文献求助10
1秒前
1秒前
2秒前
顾矜应助能干大树采纳,获得10
2秒前
3秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
ceeray23应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
加菲丰丰应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
changping应助科研通管家采纳,获得10
5秒前
211JZH发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
wu发布了新的文献求助10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
5秒前
changping应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
噗噗完成签到,获得积分10
5秒前
Yinoe发布了新的文献求助10
6秒前
cycle发布了新的文献求助10
7秒前
锅里有两条鱼完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
拾贰完成签到 ,获得积分10
10秒前
科研通AI2S应助好梦采纳,获得10
13秒前
欢呼的墨镜完成签到,获得积分10
14秒前
陈均涛完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089378
求助须知:如何正确求助?哪些是违规求助? 4304127
关于积分的说明 13413480
捐赠科研通 4129704
什么是DOI,文献DOI怎么找? 2261721
邀请新用户注册赠送积分活动 1265791
关于科研通互助平台的介绍 1200360